Происхождение самих глобулетт до сих пор неясно. Мы знаем, что подобные глобулеттам плотные облака газа и пыли могут образовываться в околозвездных дисках в результате гравитационной неустойчивости. Если это произошло, то в протопланетном диске может зажечься второй звездный компаньон или сформироваться планета-гигант. Но в туманностях межзвездный газ обладает гораздо меньшей плотностью, и гравитационные неустойчивости, как считалось, образовываться в нем не могут. Однако существование маломассивных свободно парящих коричневых карликов и блуждающих планет заставляет пересмотреть эти представления. Видимо, имеется механизм достижения газом большей плотности, но его детали пока ускользают от нашего внимания. Усложняет поиск разгадки и то, что трудно проследить закономерности того, в каких именно местах газовой туманности наблюдаются глобулетты. Многие из них изолированы, расположены далеко от пылевых столбов и областей повышенной плотности. Другие же связаны тонкими нитями с крупными молекулярными облаками и даже друг с другом.
Рисунок 21. Глобулетты в туманности Розетка. Это композиция из изображений, полученных с помощью телескопа «Канада – Франция – Гавайи» через фильтры для инфракрасного света
Ученые, которые занимаются этим вопросом, выдвигают совершенно разные гипотезы. Одни говорят, что глобулетты могут формироваться в результате фрагментации молекулярных облаков подобных тем, что приводят к образованию звезд. Другие считают глобулетты плотными сгустками газа и пыли, которые выбрасываются из околозвездных протопланетных дисков, подобно планетам. А третьи – что глобулетты образуются на границе расширяющихся пузырей горячего газа, которые формируются, когда загорается звезда. Плотность вещества на этой границе настолько велика, что оно может фрагментироваться в отдельные облака.
Образовавшиеся глобулетты «живут» в очень суровой межзвездной среде. Они подвергаются активному давлению излучения звезд и гравитационным возмущениям со стороны молодых звезд, через них проходят ударные волны и потоки газа. Время их жизни, по разным оценкам, составляет от десятков тысяч до миллионов лет. Те из них, которым повезет не рассеяться, могут коллапсировать и сформировать блуждающую планету или коричневого карлика. В 2013 году Гам с коллегами, изучая снимки туманности Розетка в ближнем инфракрасном диапазоне, нашел плотные ядра в некоторых из самых больших глобулетт98
. Это еще раз подтверждает гипотезу о том, что некоторые свободно блуждающие планеты, вероятнее всего, образуются из глобулетт. Зная, как часто в туманностях встречаются глобулетты, можно вычислить их число в Галактике. Если даже всего 10 % из тех глобулетт, что существуют в настоящий момент, коллапсируют в блуждающие планеты, то число последних возрастет на 10–20 миллиардов.В 2014 году, анализируя архивные данные телескопа «Хаббл», ученые обнаружили газовый гигант
Существует два возможных объяснения особенностей
Вторая гипотеза заключается в том, что
Инфракрасные детекторы помогают находить только молодые, еще не успевшие остыть, блуждающие планеты, излучающие в пространство много тепла. Пользуясь лишь этим методом, мы получим небольшую и, очевидно, весьма ограниченную выборку блуждающих планет. Большинство же из них, известных на настоящий момент, удалось обнаружить с помощью метода гравитационного микролинзирования.
Оливер Лодж