положений, являющая собой синтетический априорный распорядок всего неподвижного, протяженного, т. е. то же непрерывное искание синтеза, которое мы встречаем в проблеме формы каждого изобразительного искусства, в борьбе каждого отдельного художника в своей области за техническое мастерство. Чувство формы скульптора, художника и композитора по существу является математическим. В аналитической и начертательной геометрии XVII века вскрывается тот же распорядок, который вызывает к жизни, охватывает и стремится насквозь проникнуть в современную ей инструментальную музыку (фугированного стиля) и родственную ей масляную живопись, первую при помощи правил контрапункта, этой геометрии звукового пространства, вторую при помощи известной одному только Западу перспективы, этой почувствованной геометрии пространства картины. Это есть то, что Гёте называет идеей, образ которой непосредственно созерцается в чувственном, в то время как собственно наука не созерцает, но только наблюдает и разлагает. Но математика ведет дальше, чем наблюдение и разложение. В минуты возвышения она действует интуитивно, а не путем абстрагирования. Гёте принадлежит глубокое слово, что математик постольку является совершенным, поскольку он ощущает в себе красоту истины. Здесь мы чувствуем, как близка тайна феномена чисел тайне художественной формы, которая также имеет своей целью многозначительное отграничение, прекрасную меру, уравновешенное величие, строгие взаимоотношения, гармонию, короче говоря, совершенный распорядок чувственного. Таким образом, прирожденный математик становится в один ряд с великими мастерами фуги, резца и кисти, которые также стремятся одеть в символы, осуществить и сообщить другим тот великий распорядок всех вещей, который рядовой современник их культуры носит в себе, не умея в действительности им овладеть. Таким образом царство чисел становится интуитивным отображением мировой формы, наряду с царством звуков, линий и красок. Поэтому слово «творческое» в приложении к математике имеет большее значение, чем в приложении к собственным наукам. Ньютон, Гаусс, Риман были художественными натурами. Стоит только вспомнить как внезапно их осеняли их великие концепции. "Математик, — говорит старик Вейерштрас, — в котором вместе с тем нет частицы поэта, не может быть совершенным математиком".
117
Итак, математика — тоже искусство. У нее есть свои стили и периоды стилей. В противоположность мнению непосвященного или философа, поскольку последний судит как непосвященный, она по своей сущности не неизменна, но, как и всякое искусство, подвержена от эпохи к эпохе незаметным изменениям. Следовало бы при изображении развития больших искусств постоянно иметь в виду современную математику, что оказалось бы далеко не бесплодным. Подробности глубоких взаимоотношений между направлениями в теории музыки, начиная с Орландо Лассо, и фазами развития теории функции никогда не были предметом исследования, однако эстетика могла бы почерпнуть отсюда гораздо больше поучи тельного, чем из всякой «психологии». Все великие математики, начиная с Ферма, Паскаля и Декарта (1630 г.), быт трансцендентальными аналитиками, все же древние, начиная с Пифагора (540 г.) — зрительно-телесно мыслящими натурами. Нужно ли еще раз указывать на тесную связь этих дарований с начинающимся расцветом чистой инструментальной музыки в первом случае, и ионической мраморной скульптуры — во втором? Античная математика, вначале почта исключительно планиметрическая, в своем развитии от Пифагора до Архимеда, обнаруживает тенденцию к стереометрическому пониманию всего числимого. Этому соответствует тенденция плоской живописи аттическо-коринфского стиля к полной пластике через промежуточную стадию рельефа, наложенного на плоскость. Статуя возникла частью из фигурно-рельефообразно-обделанной колонны (Гера Херамия), частью из деревянных или бронзовых пластинок, служивших отделкой стены (Артемида Никандры). И дерево и порос обрабатывались при помощи резца, однако только ваяние из мрамора при помощи долота вполне отвечало художественному чувству создания тела. Соответствующий процесс наблюдается и на Западе. В то время, как так называемая геометрия превращается в анализ чистого пространства, из которого шаг за шагом устраняется все оптическое — как далеко, например, понятие координат у Декарта ушло вперед по сравнению с Ферма — одновременно и инструментальная музыка приобретает новые средства выражения. С 1520 г. изобретенная в Верхней Италии скрипка начинает заменять лютню. Фагот делается известным с 1525 г. В Германии в течение XVI и XVII столетий орган развился в покоряющий пространство инструмент. Монтеверди (1567–1643), положивший изобретением доминантсепт-аккорда начало собственной хроматики, имел в своем распоряжении первый настоящий оркестр, а в 1630 г. в лице Фрескобальди появляется
118