Читаем Занимательная арифметика [Загадки и диковинки в мире чисел] полностью

АРИФМЕТИЧЕСКИЕ КУРЬЕЗЫ

Умножение = сложению.

2 х 2 = 2 + 2

3 х 11/2 = 3 + 11/2

11 х 1,1 = 11 + 1,1

21 х 11/20 = 21 + 11/2

Глава 8

МАТЕМАТИЧЕСКИЕ ЗАГАДКИ ПИРАМИДЫ ХЕОПСА



Высочайшая пирамида древнего Египта — Хеопсова, уже пять тысячелетий обвеваемая знойным воздухом пустыни, представляет без сомнения самую удивительную постройку, сохранившуюся от древнего мира. Высотой почти в 150 м, она покрывает своим основанием площадь в 40 000 кв. м и сложена из 200 рядов исполинских камней. 10 000 рабов в течение 30 лет трудились над возведением этого сооружения, сначала подготовляя 10 лет дорогу для перевозки камней от каменоломни до места постройки, а затем громоздя их 20 лет друг на друга с помощью несовершенных машин того времени.

Было бы странно, чтобы такое огромное сооружение воздвигнуто было с единственной целью — служить гробницей для правителя страны. Поэтому некоторые исследователи стали доискиваться: не раскроется ли тайна пирамиды из соотношения ее размеров?



Перевозка камня на стройку пирамиды. Сзади рабочих идет надсмотрщик с хлыстом; поскольку он важнее всех остальных работников, он изображается более крупно (древнеегипетский рисунок).


Им посчастливилось, по их мнению, найти ряд удивительных соотношений, свидетельствующих о том, что жрецы, руководители работ по постройке, обладали глубокими познаниями по математике и астрономии и эти познания воплотили в каменных формах пирамиды.

"Геродот[34] рассказывает, — читаем мы в книге французского астронома Море ("Загадки науки", 1926, т. 1), — что египетские жрецы открыли ему следующее соотношение между стороной основания пирамиды и ее высотой: квадрат, построенный на высоте пирамиды, в точности равен площади каждого из боковых треугольников. Это вполне подтверждается новейшими измерениями. Вот доказательство, что во все времена пирамида Хеопса рассматривалась как памятник, пропорции которого рассчитаны математически.



При обтесывании каменных глыб египтяне пользовались растянутым шнурком, которым выявлялись неровности на обрабатываемой поверхности. Инструментами каменотесов были металлические зубила и деревянные молотки с конической головкой. Во всех крупных египетских постройках, включая пирамиды, огромные и тяжелые глыбы тесаного камня для лучшей плотности прилегания и устойчивости клали гладкой стороной внутрь.


Приведу более позднее доказательство: мы знаем, что отношение между длиной окружности и ее диаметром есть постоянная величина, хорошо известная современным школьникам. Чтобы вычислить длину окружности, достаточно умножить ее диаметр на 3,1416.

Математики древности знали это отношение лишь грубо приближенно.

Но вот, если сложить четыре стороны основания пирамиды, мы получим для ее обвода 931,22 м. Разделив же это число на удвоенную высоту (2 х 148,208), имеем в результате 3,1416, то-есть отношение длины окружности к диаметру. (Другие авторы из тех же измерений пирамиды выводят значение π с еще большей точностью: 3,14159. — Я. П.)

Этот единственный в своем роде памятник представляет собою, следовательно, материальное воплощение числа "пи", игравшего столь важную роль в истории математики. Египетские жрецы имели, как видим, точные представления по ряду вопросов, которые считаются открытиями ученых позднейших веков[35].

Еще удивительнее другое соотношение: если сторону основания пирамиды разделить на точную длину года — 365,2422 суток, то получается как раз 10 000000-я доля земной полуоси — с точностью, которой могли бы позавидовать современные астрономы…

Далее: высота пирамиды составляет ровно миллиардную долю расстояния от Земли до Солнца — величины, которая европейской науке стала известна лишь в конце XVIII века. Египтяне 5000 лет назад знали, оказывается, то, чего не знали еще ни современники Галилея[36] и Кеплера[37], ни ученые эпохи Ньютона[38]. Неудивительно, что изыскания этого рода породили на Западе обширную литературу.

А между тем все это — не более как игра цифрами. Дело представится совсем в другом свете, если подойти к нему с оценкой результатов приближенных вычислений.

Рассмотрим же по порядку те примеры, которые мы привели.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука