Читаем Занимательная арифметика [Загадки и диковинки в мире чисел] полностью

2. Однако задача легко решается и арифметически. Если бы вам пришлось решать ее, вы начали бы с предположения, что все купленное сукно было синее, тогда за партию в 138 аршин синего сукна пришлось бы уплатить 5 х 138 = 690 руб.; это на 690 – 540 = 150 руб. больше того, что было заплачено в действительности[9]. Разница в 150 руб. указывает, что в партии имелось и более дешевое, черное сукно — по 3 руб. аршин. Дешевого сукна было столько, что из двух рублей разницы на каждом аршине составилось 150 руб.: очевидно, число аршин черного сукна определится, если разделить 150 на 2. Получаем ответ — 75; вычтя эти 75 аршин из общего числа 138 аршин, узнаем, сколько было синего сукна: 138 — 75 = 63. Так и должен был решать задачу Петя.

3. На очереди третий вопрос: как решил задачу Удодов-старший?

В рассказе говорится очень кратко: "Он щелкает на счетах, и у него получается 75 и 63, что и нужно было".

В чем, однако, состояло это "щелканье на счетах"?

Каков способ решения задачи с помощью счетов?

Разгадка такова: злополучная задача решается на счетах тем же приемом, что и на бумаге, — теми же арифметическими действиями. Но выполнение их упрощается благодаря преимуществам, которые наши русские счеты предоставляют всякому, умеющему с ними обращаться. Очевидно, "отставной губернский секретарь" Удодов хорошо умел считать на счетах, потому что их косточки быстро, без помощи алгебры, открыли ему то, чего репетитор-семиклассник добивался узнать "с иксом и игреком". Проследим же, какие действия должен был проделать на счетах Петин отец.

Прежде всего ему нужно было, как мы знаем, умножить 138 на 5. Для этого он, по правилам действий на счетах, умножил сначала 138 на 10, то-есть просто перенес 138 одним рядом выше, а затем разделил это число пополам опять-таки на счетах же. Деление начинают снизу: откидывают половину косточек, отложенных на каждой проволоке; если число косточек на данной проволоке нечетное, то выходят из затруднения, "раздробляя" одну косточку этой проволоки на 10 нижних.



Чтобы умножить 138 на 5 при помощи конторских счетов, поступают так: сначала на счетах откладывают 138; затем простым переносом отложенных косточек на один ряд вверх число 138 множится на 10; после этого его делят на 2 (десятки уже разделены), и таким образом получают результат 138 х 5.


В нашем, например, случае делят 1380 пополам так: на нижней проволоке, где отложено 8 косточек, откидывают 4 косточки (4 десятка), на средней проволоке из 3 косточек откидывают 1, а из оставшихся 2 косточек 1 заменяют мысленно 10 нижними и делят пополам, добавляя 5 десятков к косточкам нижней; на верхней проволоке раздробляют 1 косточку, прибавляя 5 сотен к косточкам средней проволоки. В результате на верхней проволоке совсем не остается косточек; на средней 1 + 5 = 6 сотен, на нижней 4 + 5 = 9 десятков. Итого 690 единиц. Выполняется все это быстро, автоматически.

Далее Удодову-старшему нужно было из 690 вычесть 540. Как проделывается это на счетах, всем известно.

Наконец полученную разность, 150, оставалось разделить пополам: Удодов откинул из 5 косточек (десятков) 3, отдав 5 единиц нижнему ряду косточек; потом из 1 косточки на проволоке сотен отдал 5 десятков нижнему ряду: получилось 7 десятков и 5 единиц, то-есть 75.

Все эти простые действия выполняются на счетах, конечно, гораздо скорее, чем тут описано.


СЧЕТЫ


Есть много полезных вещей, которых мы не ценим только потому, что, находясь постоянно у нас под руками, они превратились в слишком обыденный предмет домашнего обихода. К числу таких недостаточно ценимых вещей принадлежат и наши конторские счеты — русская народная счетная машина, представляющая собой видоизменение знаменитого абака, или "счетной доски", наших отдаленных предков.



"Саламинская доска" — древнегреческий абак на мраморной доске размером 150х75 см, найденный на острове Саламин в 1948 году. Левые колонки служили для отсчета драхм и талантов; правые — для долей драхмы: оболов и халков. На абаке отложено: 4873 драхмы 2 обола 5 халков.



Древнегреческий сборщик податей, считающий на абаке (с античной вазы в Неаполе). Абак не имеет колонок, и камешки кладутся прямо против букв, обозначающих разряды: на нем выложены 1231 драхма 4 обола.


Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука