Читаем Занимательная астрономия полностью

Итак, астрономы определили массу земного шара. Мы имеем полное право сказать, что они взвесили Землю, потому что всякий раз, когда мы взвешиваем тело на рычажных весах, мы, в сущности, определяем не вес его, не силу, с какой оно притягивается Землей, а массу: мы устанавливаем лишь, что масса тела равна массе гирь.

Из чего состоят недра Земли?

Здесь уместно отметить ошибку, которую приходится встречать в популярных книгах и статьях. Стремясь упростить изложение, авторы представляют дело взвешивания Земли так: ученые измерили средний вес 1 см3 нашей планеты (т. е. ее удельный вес) и, вычислив геометрически ее объем, определили вес Земли умножением ее удельного веса на объем. Указываемый путь, однако, неосуществим: нельзя непосредственно измерить удельный вес Земли, так как нам доступна только сравнительно тонкая наружная ее оболочка[50] и ничего не известно о том, из каких веществ состоит остальная, значительно бóльшая часть ее объема.

Мы уже знаем, что дело происходило как раз наоборот: определение массы земного шара предшествовало определению его средней плотности. Она оказалась равной 5,5 г на 1 см3 — гораздо больше, чем средняя плотность пород, составляющих земную кору. Это указывает на то, что в глубине земного шара залегают очень тяжелые вещества. По их предполагаемому удельному весу (а также и по другим основаниям) раньше думали, что ядро нашей планеты со стоит из железа, сильно уплотненного давлением вышележащих масс. Сейчас считают, что в общем центральные области Земли не отличаются по составу от коры, но плотность их больше вследствие огромного давления.

Вес Солнца и Луны

Как ни странно, вес далекого Солнца оказывается несравненно проще определить, чем вес гораздо более близкой к нам Луны. (Само собой разумеется, что слово «вес» по отношению к этим светилам мы употребляем в том же условном смысле, как и для Земли: речь идет об определении массы.)

Масса Солнца найдена путем следующего рассуждения. Опыт показал, что 1 г притягивает 1 г на расстоянии 1 см с силой, равной 1 / 15 000 000 мг. Взаимное притяжение f двух тел с массами М и m на расстоянии D выразится согласно закону всемирного тяготения так:



Если М — масса Солнца (в граммах), m — масса Земли,D — расстояние между ними, равное 150 000 000 км, то взаимное их притяжение в миллиграммах равно



С другой стороны, эта сила притяжения есть та центростремительная сила, которая удерживает нашу планету на ее орбите и которая по правилам механики равна (тоже в миллиграммах) mV2 / D, где m — масса Земли (в граммах), V — ее круговая скорость, равная 30 км/с = 3 000 000 см/с, a D — расстояние от Земли до Солнца. Следовательно,



Из этого уравнения определяется неизвестное М (выраженное, как сказано, в граммах):

М = 2 ∙ 1033г = 2 1027т.

Разделив эту массу на массу земного шара, т. е. вычислив



получаем 1/3 миллиона.

Другой способ определения массы Солнца основан на использовании третьего закона Кеплера. Из закона всемирного тяготения третий закон выводится в следующей форме:



Зная массу Земли, получим массу Солнца.

Итак, Солнце тяжелее Земли в треть миллиона раз. Нетрудно вычислить и среднюю плотность солнечного шара: для этого нужно лишь его массу разделить на объем. Оказывается, что плотность Солнца примерно в четыре раза меньше плотности Земли.

Что же касается массы Луны, то, как выразился один астроном, «хотя она к нам ближе всех других небесных тел, взвесить ее труднее, чем Нептун, самую далекую (тогда) планету». У Луны нет спутника, который помог бы вычислить ее массу, как вычислили мы сейчас массу Солнца. Ученым пришлось прибегнуть к другим, более сложным методам, из которых упомянем только один. Он состоит в том, что сравнивают высоту прилива, производимого Солнцем, и прилива, порождаемого Луной.

Высота прилива зависит от массы и расстояния порождающего его тела, а так как масса и расстояние Солнца известны, расстояние Луны — тоже, то из сравнения высоты приливов и определяется масса Луны. Мы еще вернемся к этому расчету, когда будем говорить о приливах. Здесь сообщим лишь окончательный результат: масса Луны составляет 1 / 81 массы Земли (рис. 89).


Рис. 89. Земля «весит» в 81 раз больше Луны


Зная диаметр Луны, вычислим ее объем; он оказывается в 49 раз меньшим объема Земли. Поэтому средняя плотность нашего спутника составляет 49 / 81 = 0,6 плотности Земли.

Значит, Луна в среднем состоит из более рыхлого вещества, нежели Земля, но более плотного, чем Солнце. Дальше мы увидим (см. табличку на с. 240), что средняя плотность Луны выше средней плотности большинства планет.

Вес и плотность планет и звезд

Способ, каким «взвесили» Солнце, применим и к взвешиванию любой планеты, имеющей хотя бы один спутник.

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука