Читаем Занимательная астрономия полностью

Зная среднюю скорость υ движения спутника по орбите и его среднее расстояние D от планеты, мы приравниваем центростремительную силу, удерживающую спутник на его орбите, 2 / D, силе взаимного притяжения спутника и планеты, т. е. kmM / D2, где k — сила притяжения 1 г к 1 г на расстоянии 1 см, m — масса спутника, М — масса планеты:


откуда


По этой формуле легко вычислить массу М планеты.

Третий закон Кеплера применим и к этому случаю:



Подобное же вычисление применимо и к двойным звездам с той лишь разницей, что здесь в результате вычисления получаются не массы отдельных звезд данной пары, а сумма их масс.

Гораздо труднее определить массу спутников планет, а также массу тех планет, которые вовсе не имеют спутников.

Например, массы Меркурия и Венеры найдены из учета того возмущающего влияния, которое они оказывают друг на друга, на Землю, а также на движение некоторых комет.

Для астероидов, масса которых настолько незначительна, что они не оказывают один на другой никакого заметного возмущающего действия, задача определения массы, вообще говоря, неразрешима. Известен лишь — и то гадательно — высший предел совокупной массы всех этих крошечных планеток.

По массе и объему планет легко вычисляется их средняя плотность. Результаты сведены в следующую табличку:



Мы видим, что наша Земля и Венера — самые плотные из всех планет нашей системы. Малые средние плотности больших планет объясняются тем, что твердое ядро каждой большой планеты покрыто громадным слоем атмосферы, которая обладает малой массой, но весьма увеличивает видимый объем планеты.

Тяжесть на Луне и на планетах

Люди, мало начитанные в астрономии, нередко высказывают изумление по поводу того, что ученые, не посетив Луны и планет, уверенно говорят о силе тяжести на их поверхности. Между тем совсем нетрудно рассчитать, сколько килограммов должна весить гиря, перенесенная на другие миры. Для этого нужно лишь знать радиус и массу небесного тела.


Рис. 90. Сколько весил бы человек на разных планетах. Вес человека на Плутоне — не 18 кг, а всего лишь 3,6 кг (по современным данным)


Определим, например, напряжение силы тяжести на Луне. Масса Луны, как мы знаем, в 81 раз меньше массы Земли. Если бы Земля обладала такой маленькой массой, то напряжение силы тяжести на ее поверхности было бы в 81 раз слабее, чем теперь. Но по закону Ньютона шар притягивает так, словно вся его масса сосредоточена в центре. Центр Земли отстоит от ее поверхности на расстоянии земного радиуса, центр Луны — на расстоянии лунного радиуса. Но лунный радиус составляет 27 / 100 земного, а от уменьшения расстояния в 100 / 27 раза сила притяжения увеличивается в (100 / 27)2 раз. Значит, в конечном итоге напряжение силы тяжести на поверхности Луны составляет



Итак, гиря в 1 кг, перенесенная на поверхность Луны, весила бы там только 1/6 кг, но, конечно, уменьшение веса можно было бы обнаружить только с помощью пружинных весов (рис. 90), а не рычажных.

Любопытно, что, если бы на Луне существовала вода, пловец чувствовал бы себя в лунном водоеме так же, как на Земле. Его вес уменьшился бы в шесть раз, но во столько же раз уменьшился бы и вес вытесняемой им воды; соотношение между ними было бы такое же, как на Земле, и пловец погружался бы в воду Луны ровно на столько же, насколько погружается он у нас.

Впрочем, усилия подняться над водой дали бы на Луне более заметный результат: раз вес тела пловца уменьшился, оно может быть поднято меньшим напряжением мускулов.

Ниже приведена табличка величины силы тяжести на разных планетах по сравнению с земной.



Как видно из таблички, наша Земля по силе тяжести стоит на пятом месте в Cолнечной системе после Юпитера, Нептуна, Сатурна и Урана[51].

Рекордная тяжесть

Самой большой величины достигает сила тяжести на поверхности тех «белых карликов» типа Сириуса В, о котором мы говорили в главе IV. Легко сообразить, что огромная масса этих светил при сравнительно небольшом радиусе должна обусловить весьма значительное напряжение силы тяжести на их поверхности. Сделаем расчет для той звезды созвездия Кассиопеи, масса которой в 2,8 раза больше массы нашего Солнца, а радиус — вдвое меньше радиуса Земли. Вспомнив, что масса Солнца в 330 000 раз больше земной, устанавливаем, что сила тяжести на поверхности упомянутой звезды превышает земную в

2,8 ∙ 330 000 ∙ 22 = 3 700 000 раз.

1 см3 воды, весящий на Земле 1 г, весил бы на поверхности этой звезды почти 3 3/4 т! 1 см3 вещества самой звезды (которое в 36 000 000 раз плотнее воды) должен в этом удивительном мире иметь чудовищный вес

3 700 000 ∙ 36 000 000 = 133 200 000 000 000 г.

Наперсток вещества, весящий сто миллионов тонн, — вот диковинка, о существовании которой во Вселенной не помышляли еще недавно самые смелые фантасты.

Тяжесть в глубине планет

Как изменился бы вес тела, если бы оно было перенесено в глубь планеты, например на дно фантастической глубокой шахты?

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука