Естественно, в этих усилителях решительно не рекомендуется подгонять ноль выходного напряжения с помощью нарушения баланса резисторов (например, R4/R5 и R6/R7 в схеме рис. 12.4, б
). В то же время иногда установка нуля необходима, т. к. начальное смещение выхода может быть, например, отрицательным (и не только вследствие смещения самих ОУ, но и по причине начального смещения у источника сигнала), и в случае, если весь диапазон изменения выходного напряжения должен располагаться в положительной области (скажем, при подаче его куда-нибудь на вход аналого-цифрового преобразователя, отрицательных напряжений не «понимающего»), вы можете потерять заметный кусок диапазона. Иногда для установки нуля рекомендуют воспользоваться корректирующими выводами одного из входных ОУ, но в сдвоенных и счетверенных вариантах эти выводы обычно отсутствуют, просто вследствие элементарной нехватки контактов корпуса, и это дополнительно удержит нас от такой глупости. В действительности установку нуля лучше осуществлять со стороны входов — подмешивая к одному из входных напряжений через развязывающий резистор небольшой ток коррекции. Как это осуществляется на практике, мы увидим, рассмотрев еще несколько типовых схем на ОУ.
Другие распространенные схемы на ОУ
В начале главы я упоминал о том, что операционные усилители получили свое название потому, что применялись для моделирования математических операций.
Схема аналогового сумматора
(рис. 12.5, а) есть одна из таких классических схем. Представляет собой она обычный инвертирующий усилитель, на который подается несколько входных напряжений, — каждое от своего источника. Легко сообразить, что в этой схеме коэффициент усиления будет для каждого из входов определяться соотношением резистора обратной связи R1 и соответствующего входного резистора — так, как если бы остальных входов и не существовало. Потому сигнал на выходе будет равен (усиленной) сумме сигналов на входе (с противоположным знаком).В простейшем случае, если все резисторы (включая и R1) равны между собой, то выходное напряжение будет равно просто сумме входных. Если же значения резисторов варьировать, то можно получить так называемую взвешенную сумму — когда каждый из входных сигналов вносит вклад в общее дело в соответствии с заданным ему коэффициентом. Кстати, если взять схему простого дифференциального усилителя (см. рис. 12.4, а
) и заменить в ней резистор R4 такой же многовходовой цепочкой, то получится неинвертирующий сумматор. А если то же самое проделать еще и на инвертирующем входе, то получим сумматор, в котором весовые коэффициенты могут иметь разные знаки. Сумматор был неотъемлемой частью систем моделирования дифференциальных уравнений, для решения которых операционные усилители в составе аналоговых машин изначально и использовались.Второй необходимой составляющей таких машин был интегратор
на ОУ, схема которого приведена на рис. 12.5, б. Этот интегратор, в отличие от интегрирующей RC-цепочки из главы 5, действительно осуществляет операцию интегрирования в корректной форме. Например, если подать на его вход постоянное напряжение (отрицательное), то напряжение на выходе будет линейно возрастать со скоростью Uвх/RC вольт в секунду (интеграл от константы есть прямая линия). Входной сигнал можно подать и на неинвертирующий вход, заземлив резистор R — получим неинвертирующий интегратор. Можно также объединить интегратор с сумматором — тогда интегрирование будет осуществляться по сумме входных напряжений с соответствующими весовыми коэффициентами. Интеграторы, как и сумматоры, используются и по сей день в различных схемах.На рис. 12.5, в
приведена любопытная схема, которая в зависимости от состояния ключа К меняет знак напряжения на выходе.
Рис. 12.5.
Распространенные схемы на ОУ: а
— аналоговый сумматор, б — интегратор, в — повторитель/инвертор; г — источник тока
Если К
замкнут, то это инвертирующий усилитель с коэффициентом усиления, равным 1. Если же ключ разомкнут, то схема превращается в повторитель — ведь потенциалы во всех точках схемы в этом случае должны быть равны. В качестве ключа очень удобно использовать, скажем, транзистор или малогабаритное электронное реле — тогда такая схема может пригодиться для автоматического изменения знака усиления при необходимости отобразить отрицательную часть диапазона напряжений на входе в положительную область. Подобная задача может возникнуть, скажем, для датчиков, показывающих температуру, — и выше нуля градусов Цельсия, и ниже его характеристика должна быть возрастающей, т. к. абсолютное значение величины температуры возрастает в обоих случаях, в то время как сам сигнал с выхода датчика меняется линейно в одну сторону.