Читаем Занимательная электроника полностью

Наладка будет заключаться в подборе резистора R2 под конкретный экземпляр термистора. Его нужно подобрать так, чтобы сигнал на выходе был чисто синусоидальным, без искажений. Частота регулируется сдвоенным резистором R3-R4. При указанных на схеме номиналах минимальная частота получится около 30 Гц, а максимальная — около 1 кГц. Чтобы расширить диапазон частот, придется поставить сдвоенный переключатель на несколько положений и изменять им емкости конденсаторов. Удобно, например, подобрать сопротивление резисторов R5 и R6 так, чтобы диапазон частот составлял 30-330 Гц, тогда, меняя с помощью переключателя емкости конденсаторов в десять раз (0,1 мкФ, 0,01 мкФ, 1 нФ), вы будете иметь перекрывающиеся диапазоны 30-330, 300-3300 и 3000-33 000 Гц. Обратите внимание, что никакой особой подгонки по равенству номиналов резисторов и конденсаторов не требуется, схема будет работать при любых (в разумных пределах) соотношениях номиналов, и равенство здесь выбрано только из соображений удобства расчета. Амплитуда сигнала на выходе регулируется потенциометром (R7 на схеме), а чтобы иметь низкое выходное сопротивление, добавлен повторитель на втором ОУ из корпуса.

Немало других интересных применений ОУ вы можете найти в многочисленной литературе, например, в классических трудах [4, 11]. А мы на этом с рассмотрением принципов использования ОУ закончим и займемся конструированием практических схем.


Конструируем термостаты


Термостат, т. е. устройство для поддержания температуры, — простейшее техническое устройство из класса гомеостатов, т. е. систем, которые автоматически поддерживают значение некоей величины на заданном уровне. Яркий пример хорошо всем знакомого гомеостата — наш собственный организм, в котором непрерывно с высочайшей точностью поддерживаются оптимальные значения таких величин, как температура, концентрация кислорода в крови, уровень адреналина и прочих параметров, причем практически независимо от вашей воли. Эти системы продолжают работать до тех пор, пока вы живы. Многие болезни есть следствие или причина расстройств гомеостатических функций организма, типичный случай — простуда, при которой в том числе работа термостатирующей системы сдвигается таким образом, что температура начинает расти.

Ключевой особенностью всех гомеостатов является обязательное наличие отрицательной обратной связи, на что обратил внимание еще отец кибернетики Норберт Винер. Поэтому любой гомеостат можно в принципе свести к обобщенной блок-схеме по рис. 12.2. На примере термостатов можно научиться создавать несложные регуляторы любой физической величины — все зависит от датчика и исполнительного механизма, — причем особо не вникая в сложнейшую теорию автоматического регулирования и управления.

Конструировать термостаты одновременно и просто, и сложно. В частности, со схемотехнической точки зрения термостаты конструировать проще, чем регуляторы других величин. Процесс нагревания очень инерционен, и любой нагревательный элемент, кроме уж совсем миниатюрных (вроде нагревателей в головках термопринтеров), является естественным фильтром низких частот, как мы видели в предыдущем разделе. Поэтому при конструировании термостатов, как правило, не возникают какие бы то ни было проблемы, связанные с фазовыми сдвигами и возможным переходом всей системы в автоколебательный режим, не нужно возиться со сложными схемами дифференциальных или интегральных регуляторов (для других величин это может быть далеко не так). Зато это же самое свойство процесса нагревания заставляет внимательнее относиться к собственно конструкции термостата — стоит расположить датчик в неподходящем месте или не обеспечить равномерное распределение тепла, й качество регулирования резко падает, вплоть до полной неработоспособности устройства.


Термостат вообще


На рис. 12.7 приведена типовая структурная схема термостата. Следует отметить, что для полноты картины в приведенной структурной схеме не хватает одного компонента — холодильного устройства. Термостат, который показан на схеме, может поддерживать температуру только выше температуры окружающей среды — в чем, впрочем, большинство практических задач в области техники и заключается. Введение холодильного агрегата не представляет никаких трудностей теоретически, но есть не всегда тривиальная задача практически, т. к. холодильник — сами знаете, насколько это громоздкая конструкция. Сейчас мы рассмотрим работу схемы без охлаждения, а затем поглядим, с какого бока туда можно пристроить холодильник, если вдруг это понадобится.

* * *

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки