Читаем Занимательная электроника полностью

Еще одна давно обещанная и очень полезная схема (рис. 12.5, г) представляет собой почти идеальный источник тока с выходным сопротивлением, равным бесконечности. Здесь может использоваться однополярное питание, что и показано на схеме. Ток можно задавать как соотношением резисторов делителя R1-R2, так и резистором R. Обратите внимание, что отрицательная обратная связь подается на неинвертирующий выход ОУ, — поскольку здесь применен полевой транзистор с n-каналом, и стабилизируется его стоковое напряжение, которое есть инверсия напряжения на затворе. Если взять транзистор с p-каналом, то его в этой схеме нужно подключить наоборот — стоком в направлении нагрузки, а обратную связь, снимаемую с истока, подавать нормально, на инвертирующий вход.

Для высокой стабильности тока в этой схеме требуется столь же высокая стабильность напряжения питания, поэтому если важна абсолютная величина тока, то резисторы приходится питать от отдельного прецизионного стабилизатора (не только делитель R1-R2, но и цепь резистора R). От характеристик транзистора стабильность тока почти никак не зависит, единственное требование — чтобы начальный ток стока превышал установленный выходной ток схемы. Если применить не полевой, а биполярный транзистор, то будет иметь место некоторая зависимость выходного тока от изменений базового тока транзистора (ибо коллекторный ток отличается от эмиттерного на величину тока базы), потому чаще в таких источниках применяют полевые транзисторы.


Аналоговый генератор


Еще в главе 2 я обещал, что нами будет построен генератор для домашней лаборатории. Вообще-то их нам требуется два: цифровой (выдающий прямоугольные импульсы) и аналоговый (генератор синусоидальных колебаний). Объединять их в одной конструкции, как это чаще всего делают, неудобно, потому что синусоидальный генератор должен выдавать переменное напряжение с амплитудой в минус и в плюс, а цифровой — однополярное пульсирующее, т. е. от нуля до плюса питания. Поэтому цифровым генератором мы займемся в главе 16, после изучения двоичных счетчиков, а пока сделаем аналоговый.

Принципиальная схема его приведена на рис. 12.6. Она выполнена по широко распространенной схеме генератора Вина — Робинсона. Для того чтобы генератор выдавал именно синусоидальные колебания, коэффициент усиления ОУ должен быть в этой схеме равен ровно 3 — если он меньше, то генератор просто не запустится, если больше — верхушки синусоид начнут обрезаться, и в пределе выходные колебания станут прямоугольными.



Рис. 12.6. Схема лабораторного генератора синусоидальных колебаний


Разумеется, подбором компонентов установить коэффициент усиления с нужной точностью невозможно. Поэтому применяют хитрый метод — в обратную связь ставят элемент, сопротивление которого зависит от среднего значения напряжения на нем. Проще всего оказалось использовать для этой цели термозависимые резисторы. В нашем случае используется термистор, у которого зависимость сопротивления от выделяющейся мощности имеет отрицательный наклон. В результате при увеличении амплитуды напряжения на выходе генератора его сопротивление падает, и нужный коэффициент устанавливается автоматически. Можно использовать также обычную маломощную лампочку для карманного фонарика — только наклон зависимости у нее положительный, потому ее следует ставить вместо резистора R2, a R1 тогда оставить постоянным. Для того чтобы обратная связь с лампочкой работала, от ОУ может понадобиться достаточно большой выходной ток, и тогда следует добавить к нему умощняющий выходной каскад на транзисторе (например, как в лабораторном источнике на рис. 9.12). Есть и более тонкие способы стабилизации коэффициента усиления (скажем, с использованием полевого транзистора в обратной связи, см. [19]), но опыт показывает, что и этот старинный рецепт, еще времен господства ламповой схемотехники, прекрасно работает.

Схему по рис. 12.6 можно собрать всю сразу. Здесь можно использовать любой ОУ общего применения. Показанный на схеме сдвоенный ОУ типа 140УД20 представляет собой два знакомых нам μА741 (140УД7), размещенных в одном корпусе. С ними генератор будет приемлемо работать до частот в несколько десятков килогерц. Напряжения питания могут составлять от ±5 до ±20 В, удобно выбрать напряжение около ±7–8 вольт, т. к. большие амплитуды практически никогда не требуются. Термистор может быть любого типа, но не слишком большой по размерам, чтобы он разогревался малыми токами (например бусинковый отечественный СТ1-19, СТЗ-19 или импортный каплевидный B57861-S близкого номинала).

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки