Читаем Занимательная электроника полностью

• если номиналы резисторов различаются во много раз, то общее сопротивление примерно равно меньшему номиналу (это также можно проиллюстрировать на примере рис. 1.4, где мы игнорируем наличие вольтметра, включенного параллельно R2, т. к. его сопротивление намного больше сопротивления резистора).

Знание этих правил поможет вам быстро оценивать схему, не занимаясь алгебраическими упражнениями и не прибегая к помощи калькулятора. Даже если соотношение сопротивлений не попадает под перечисленные случаи, результат все равно можно оценить «на глаз» с достаточной точностью. При параллельном соединении, которое представляет большую сложность при расчетах, для такой оценки нужно прикинуть, какую долю меньшее сопротивление составляет от их арифметической суммы, — приблизительно во столько раз снизится их общее сопротивление по отношению к меньшему. Проверить это легко: пусть одно сопротивление имеет номинал 3,3 кОм, а второе — 6,8 кОм. В соответствии с изложенным мы будем ожидать, что общее сопротивление должно быть на 30 % меньше, чем 3,3 кОм, т. е. 2,2 кОм (3,3 составляет примерно одну треть от суммы 3,3 + 6,8, т. е. общее сопротивление должно быть меньше, чем 3,3, на треть от этого значения, равную 1,1 — в результате и получаем 2,2). Если мы проверим результат, полученный такой прикидкой в уме, точным расчетом, то мы получим в результате очень близкое значение 2,22 кОм.

В большинстве случаев нам такой точности и не требуется — помните, что и сами сопротивления имеют разброс по номиналу, и в большинстве обычных схем допуски на номиналы стандартных компонентов могут быть довольно велики (по крайней мере, в правильно составленных схемах). Если же схема в некоторых случаях должна все же иметь какие-то строго определенные параметры, то с помощью стандартных компонентов вы все равно этого не добьетесь — параметры будут «гулять» (в пределах допусков, естественно) от дуновения ветерка из форточки, и в таких случаях надо применять прецизионные резисторы и конденсаторы, а во времязадающих цепях использовать кварцевые резонаторы. Но составлять схему так, чтобы она теряла работоспособность от замены резистора 1 кОм на резистор 1,1 кОм, — не наш метод!


Конденсаторы


Все конденсаторы ведут свою родословную от лейденской банки, названной так по имени голландского города Лейдена, в котором трудился ученый середины XVIII века Питер ван Мушенбрук.

Банка эта представляла собой большой стеклянный стакан, обклеенный изнутри и снаружи станиолем (тонкой оловянной фольгой, использовавшейся в те времена для тех же целей, что и современная алюминиевая, — металл алюминий еще не был известен). Так как банку (рис. 5.4) заряжали от электростатической машины (другого искусственного источника электричества тогда еще не придумали), которая запросто может выдавать напряжения в несколько сотен тысяч вольт, действие ее было весьма впечатляющим — в учебниках физики любят приводить случай, когда Мушенбрук продемонстрировал эффект от разряда своей банки через цепь гвардейцев, держащихся за руки. Ну не знали тогда, что электричество может и убить — гвардейцам сильно повезло, что емкость этого примитивного конденсатора была весьма невелика, и запасенной энергии хватило только на то, чтобы люди ощутили чувствительный удар током!



Рис. 5.4.Прадедушка современных конденсаторов — лейденская банка:

1 — стеклянный стакан; 2 — внешняя обкладка из станиоля; 3 — внутренняя обкладка; 4 — контакт для заряда


Схематическое изображение простейшего конденсатора показано на рис. 5.5.



Рис. 5.5. Схематическое изображение плоского конденсатора и формула для расчета его емкости: С — емкость, Ф; S — площадь пластин, м2; d — расстояние между пластинами, м; s — диэлектрическая проницаемость


Из формулы, приведенной на рисунке (она носит специальное название формула плоского конденсатора, потому что для конденсаторов иной геометрии соответствующее выражение будет другим), следует, что емкость тем больше, чем больше площадь пластин и чем меньше расстояние между ними. Что же такое емкость? Согласно определению, емкость есть отношение заряда (в кулонах) к разности потенциалов на пластинах (в вольтах): С = Q/U, т. е. размерность емкости есть кулон/вольт. Такая единица называется фарадой, по имени знаменитого английского физика и химикаМайкла Фарадея (1791–1867).

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки