Читаем Занимательная электроника полностью

Заметки на полях

Мало того, провода обладают еще и собственной индуктивностью (об индуктивности мы поговорим в конце главы), что еще более запутывает картину. Крайне неприятное явление, но «такова се ля ви», как любил выражаться один мой знакомый инженер. Впервые с этим делом столкнулись еще при попытке прокладки первого трансатлантического кабеля в 1857 году — телеграфные сигналы (точки-тире) представляют собой именно такие прямоугольные импульсы, и при длине кабеля в 4000 км они по дороге искажались до неузнаваемости. За время до следующей попытки прокладки кабеля (1865) английскому физику У. Томсону пришлось разработать теорию передачи сигналов по длинным линиям, за что он получил рыцарство от королевы Виктории и вошел в историю под именем лорда Кельвина — по названию городка Кельвин на западном побережье Ирландии, откуда начиналась прокладка кабеля.

* * *

В выражении для емкости на рис. 5.5 фигурирует постоянная ε, представляющая собой диэлектрическую проницаемость среды. Для воздуха и большинства обычных изолирующих материалов (полиэтилена, хлорвинила, лавсана, фторопласта) константа е близка к величине ее для полного вакуума ε0. Величина ε0 зависит от применяемой системы единиц измерения, и в Международной системе единиц измерения СИ равна 8,854-10-12 Ф/м. На практике удобно применять относительную диэлектрическую проницаемость конкретного материала: εr = ε/ε0. Естественно, что в практических конструкциях конденсаторов желательно, чтобы величина εr была как можно выше, — если вы заполните промежуток между пластинами, скажем, ацетоном или спиртом, то емкость такого конденсатора сразу возрастет раз в двадцать! К сожалению, чем выше εr, тем обычно выше и собственная проводимость материала, потому такой конденсатор быстро разрядится за счет собственных токов утечки через среду между пластинами. Ясно, что производители конденсаторов стараются упаковать как можно большую емкость в как можно меньшие размеры, пытаясь одновременно обеспечить токи утечки на приемлемом уровне. По этой причине количество практически используемых типов конденсаторов значительно больше, чем сопротивлений. Причем надо также учесть, что чем тоньше прослойка диэлектрика между пластинами, тем меньше предельно допустимое напряжение (т. е. напряжение, при котором наступает электрический пробой, и конденсатор выходит из строя).

Самым высоким соотношением емкость/габариты обладают электролитические (оксидные) конденсаторы, которые в настоящее время широко представлены серией, известной под отечественным наименованием К50-35 (импортные конденсаторы такого же типа обычно все равно продают под этим названием). Емкости их достигают 100 000 кФ, а допустимые напряжения — 600 В, но у них есть три главных недостатка, которыми приходится платить за повышенную емкость. Первый и самый главный — эти конденсаторы полярны, т. е. подразумевают включение только в определенной ориентации по отношению к полярности источника питания. Обычно на корпусе таких конденсаторов обозначается либо отрицательный (жирным «минусом»), либо положительный (знаком «плюс») вывод. Если же габариты корпуса не позволяют применить обозначение (либо производителям лень налаживать соответствующую полиграфию), то полярность пытаются обозначить толщиной или длиной вывода — более длинный и/или более толстый вывод обычно обозначает положительный контакт (но не всегда!). Если же включить такой электролитический конденсатор в противоположной полярности, то он может просто взорваться, забрызгав электролитом всю остальную схему. Есть и другие, более дорогие типы полярных конденсаторов (например, танталовые К52 или ниобиевые К53), которые обладают значительно меньшими токами утечки. Электролитические конденсаторы обычно используют в качестве фильтров в источниках питания — хотя и иные применения не исключены.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки