Следует подчеркнуть, что величина емкости есть индивидуальная характеристика конденсатора — подобно тому, как номинальное сопротивление есть индивидуальная характеристика конкретного резистора, — и характеризует количество энергии, которое может быть в нем запасено. Емкость в одну фараду весьма велика — обычно на практике используют микрофарады и еще более мелкие единицы, скажем, емкость упомянутой лейденской банки составляла величину всего-навсего порядка 1 нФ.
Смысл понятия емкости раскрывается так: если напряжение от источника напряжения составляет 1 В, то емкость в одну нанофараду, как у лейденской банки, может запасти 10-9
кулон электричества. Если напряжение составит 105 вольт (типичная величина при заряде от электростатической машины, как в опытах Мушенбрука), то и запасенный на этой емкости заряд увеличится в той же степени — до 10-4 кулон. Любой конденсатор фиксированной емкости сохраняет это соотношение — заряд на нем в любой момент времени тем больше, чем больше напряжение, а сама величина заряда определяется номинальной емкостью.Если замкнуть конденсатор на резистор, то в первый момент времени он будет работать, как источник напряжения с нулевым выходным сопротивлением и номинальным напряжением той величины, до которой конденсатор был заряжен, т. е. ток через резистор определяется по обычному закону Ома. Скажем, в случае гвардейцев Мушенбрука характерное сопротивление цепи из нескольких человек, взявшихся за руки, составляет порядка 104
Ом — т. е. ток при начальном напряжении на конденсаторе 105 В составит 10 А, что примерно в 10 000 раз превышает смертельное для человека значение тока! Выручило гвардейцев то, что такой импульс был крайне кратковременным — по мере разряда конденсатора, т. е. стекания заряда с пластин, напряжение быстро снижается: емкость-то остается неизменной, потому при снижении заряда, согласно формуле на рис. 5.5, падает и напряжение.Интересно, что при фиксированном заряде (если цепь нагрузки конденсатора отсутствует) можно изменить напряжение на нем, меняя емкость. Например, при раздвижении пластин плоского конденсатора емкость его падает (т. к. расстояние
На рис. 5.6 изображено подключение конденсатора
Рис. 5.6.
К
— переключатель, Б — батарея, С — конденсатор; R — сопротивление нагрузкиЭто легко попробовать оценить через размерности связанных между собой электрических величин: тока, емкости и напряжения. В самом деле, в определение тока входит и время (напомним, что ток есть заряд, протекающий за единицу времени), и это время должно быть тем самым временем, которое нас интересует. Если вспомнить, что размерность емкости есть кулоны на вольт, то искомое время можно попробовать описать формулой: t
= CU/I, гдеПри обычной фиксированной нагрузке с сопротивлением
Рис. 5.7.
С
— емкость; R — сопротивление нагрузки; t — время; е — основание натуральных алгоритмов (2,718282)