Читаем Занимательная электроника полностью

Вы зададите вопрос — а зачем здесь конденсатор? Ведь в нестабилизированном источнике, который мы рассмотрели ранее, и откуда поступает напряжение на этот стабилизатор, один фильтрующий конденсатор уже имеется, не так ли? Ответ простой: на выходе всех типов стабилизаторов всегда ставится конденсатор, как и до них. Он позволяет сгладить наличие остаточных пульсаций, которые все равно просочатся на выход, потому что стабилитрон имеет свое дифференциальное сопротивление, и при изменении входного напряжения или тока в нагрузке напряжение на нем также будет меняться, хоть и в небольшой степени. Величина емкости здесь может быть значительно меньше, чем на выходе выпрямительного моста, но не жадничайте — стоимость конденсаторов нынче такова, что поставить здесь конденсатор емкостью, к примеру, 470 мкФ ничто вам помешать не может, а по размерам и стоимости он будет мало отличаться от такого же, но емкостью 47 мкФ. Для интегральных стабилизаторов, которые мы будем рассматривать далее, конденсатор на выходе положен по рекомендациям производителя, но он может быть меньше, — обычно рекомендуется ставить керамический, емкостью 0,1–1 мкФ.

Значительно интересней схема на рис. 9.9, б. Здесь транзистор включен эмиттерным повторителем, который, во-первых, имеет высокое входное сопротивление (поэтому ток через стабилитрон мало зависит от изменений тока в нагрузке), во-вторых, служит усилителем тока (подробности см. в главе 6). То есть мощностные возможности здесь определяются только транзистором. Конденсатора здесь целых два: первый помогает сглаживать пульсации на стабилитроне, второй — оставшиеся пульсации на выходе транзистора.

При указанных на схеме параметрах она выдаст нам около 1 А. Статический коэффициент передачи тока для транзистора КТ815А равен (по справочнику) 40, поэтому базовый ток при 1 А на выходе должен составить не менее 25 мА, а ток через стабилитрон КС156А ни при каких условиях не должен быть меньше 3 мА (минимальное допустимое значение). Из этих соображений выбирается величина сопротивления R = 200 Ом.



Рис. 9.9.Два стабилизатора для источников питания:

а — самый простой на стабилитроне; б — с эмиттерным повторителем


Да, кстати, а какая мощность выделится на «проходном» транзисторе VT1? Не такая уж и маленькая: (12 В — 5 В)·1 А = целых 7Вт! То есть его явно надо ставить на радиатор, методику расчета которых мы будем рассматривать далее. Отсюда виден главный недостаток подобных аналоговых стабилизаторов — низкий КПД.

В данном случае он всего около сорока процентов (проверьте!), остальное рассеивается в пространстве. Мы можем его несколько повысить, снижая входное напряжение, но только до определенного предела — здесь он равен примерно 8 В, иначе эта схема не справится. Помните, однако, что 8 В — это действительно нижний предел, а не среднее значение пульсирующего напряжения на выходе конденсатора фильтра, которое показывает вольтметр — если вы еще раз взглянете на рис. 9.7, то поймете, о чем я. В противном случае стабилизатор просто перестанет стабилизировать. Потому всегда следует иметь запас, и не слишком маленький. Заменой n-p-n-транзистора на p-n-р с соответствующим изменением всех полярностей (в том числе переворотом конденсаторов и стабилитрона) на обратные, мы получим стабилизатор отрицательного напряжения. А для получения большего тока на выходе вместо обычного транзистора можно поставить транзистор с «супербетой». Если мы заменим КТ815 на «дарлингтоновский» КТ829, то можем «выжать» уже до 10 А, только для сохранения значения выходного напряжения вместо КС156А придется использовать КС162А. И не забудьте, что и нестабилизированный источник тоже должен обеспечить такой ток, да и радиатор придется ставить существенно больший!

Идя по этому пути, мы можем построить недорогой двуполярный источник питания для нашего усилителя из главы 8. Если вы ее внимательно перечтете, то сообразите, что номинальная мощность источника для такого усилителя должна составлять не менее 100 Вт (пиковый ток в нагрузке может достигать 3,3 А при максимальной выходной мощности усилителя) или по 50 Вт на каждом из двуполярных напряжений по 15 В. Соответствующая этим условиям схема источника питания для усилителя, описанного в главе 8, приведена на рис. 9.10. Я привожу ее без пояснений, потому что всеми необходимыми сведениями, чтобы в ней разобраться, вы уже обладаете. Стабилитрон 1N4745A — достаточно мощный (ток стабилизации — до 57 мА), с напряжением стабилизации 16 В. Светодиоды (VD7, VD8) сигнализируют о наличии напряжения по обоим каналам.



Рис. 9.10.Мощный двуполярный стабилизатор на ±15 В, 4 А (для усилителя из главы 8)


Интегральные стабилизаторы


Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки