Рис. 9.13.
Предположим, что R1 и R2 на рис. 9.13 равны между собой. Какое напряжение будет на выходе, т. е. на эмиттере транзистора VT1? Определить это очень просто. Если на «плюсовом» входе ОУ напряжение 1 В, как обозначено на схеме, то на минусовом тоже должен быть 1 В, как мы только что узнали. При каком условии это возможно? Только если на верхнем выводе R1, т. е. на выходе всей системы, будет 2 В — ведь R1 и R2 делят это напряжение пополам. То есть ОУ автоматически установит на базе транзистора VT1 такое напряжение, чтобы на его эмиттере было ровно 2 В (можно даже догадаться, какое именно — на 0,6 В больше, чем на выходе, т. е. 2,6 В, но на самом деле это нас мало интересует). А если предположить, что R1 в два раза больше, чем R2? Повторив предыдущие рассуждения, мы обнаружим, что на выходе должно быть 3 В. Отсюда можно вывести некоторую закономерность: система, показанная на рис. 9.13, усиливает напряжение, поданное на «плюсовой» вход, ровно в (R1/R2 +1) раз.
Именно так и работает схема источника на рис. 9.12. Переключатель П1 имеет 6 положений, в каждом из которых он изменяет соотношение делителя в обратной связи таким образом, чтобы при напряжении 1 В на «плюсовом» входе на выходе получался некий ряд фиксированных напряжений. При указанных в таблице номиналах резисторов R4-R10 этот ряд будет следующим: 3; 5; 7,5; 10; 12 и 15 В, чего достаточно для большинства наших нужд.
Конечно, можно не возиться с переключателем и подбором сопротивлений, а просто поставить вместо цепочки R5-R9 переменный резистор, равный сумме этих сопротивлений, по схеме потенциометра — эффект будет таким же, только напряжение станет меняться плавно: от 3 до 15 В. Однако иметь набор фиксированных напряжений намного удобнее — тут вы получите точно известное напряжение, а при плавной регулировке его каждый раз придется подгонять по вольтметру. Разумеется, бывают изредка ситуации, когда нужно получить напряжение, скажем, 4,75 вольта, но на этот случай лучше завести отдельный плавно регулируемый источник.
Делитель можно устроить совершенно по-разному — возьмите переключатель на 12 положений — получите переключение через 1 В. Пересчитать номиналы резисторов из описанного ранее общего соотношения несложно: так, если хочется вместо 10 В в приведенном ряду иметь 9 В, то номинал R8 следует увеличить до 224 Ом, a R7 — уменьшить до 205 Ом (при этом сумма сохранится, и остальные напряжения не изменятся). Можно добавить переменный резистор и плавно регулировать напряжение внутри каждого фиксированного диапазона. (Подумайте, как это сделать? Подсказка: переключатель должен быть на два направления.) Отметим, что в этой схеме применять прецизионные резисторы С2-29В совершенно необязательно — не те точности требуются. Поэтому можно требуемые номиналы просто подобрать из набора обычных, стараясь выдержать их как можно ближе к расчетным. Допускается также весь расчетный ряд умножить или поделить на любое число, лишь бы все значения изменились в одинаковой степени. Границы, которыми следует при этом руководствоваться, — это нижний предел суммы всех резисторов в 1–2 кОм, а верхний — в пару десятков килоом.
Теперь перейдем к подробному рассмотрению остальных, вспомогательных узлов схемы. Монструозная конструкция с полевым транзистором наверху на самом деле всего лишь узел, который позволяет получить стабильное опорное напряжение ровно 1В — от его стабильности точность шкалы выходных напряжений зависит напрямую.
В педагогических целях рассмотрим подробнее, как работает такая древняя схема. Полевой
Вместо всей этой конструкции, конечно, можно поставить небольшую микросхему — источник опорного напряжения или просто любой стабилизатор из серии LM, только сопротивление R1 придется пересчитать так, чтобы в среднем положении движка R2 на нем сохранилось около 1 В. Потенциометром этим можно плавно менять всю шкалу напряжений на выходе (но до определенного предела, ограниченного как снизу, так и сверху). Разумеется, эту цепочку вполне можно заменить двумя постоянными резисторами.