Читаем Занимательная электроника полностью

Сразу скажем — теоретической методики для расчета охлаждающих радиаторов не существует. По этому поводу можно написать не одну диссертацию или монографию (и написаны, и много), но стоит изменить конфигурацию охлаждающих ребер или стержней, расположить радиатор не вертикально, а горизонтально, приблизить к нему любую другую поверхность снизу, сверху или сбоку — все изменится, и иногда кардинально. Именно поэтому производители микропроцессоров или процессоров для видеокарт предпочитают не рисковать, а снабжать свои изделия радиаторами с вентилятором — принудительный обдув, даже слабенький, повышает эффективность теплоотвода в десятки раз, хотя нередко это совершенно не требуется (но они поступают по закону «лучше перебдеть, чем недобдеть», и это правильно). Здесь мы приведем только пару эмпирических способов, которые оправдали себя на практике и годятся для того, чтобы рассчитывать пассивные (т. е. без обдува) радиаторы для усилителя из главы 8 или для линейных источников питания из этой главы.

Сначала посмотрим, как рассчитывать площадь радиаторов, исходя из их геометрии. На рис. 9.14 схематично показан типичный пластинчатый радиатор.



Рис. 9.14.Типичный пластинчатый радиатор


Для расчета его площади нужно к площади его основания прибавить суммарную площадь его ребер (также с каждой стороны). Если нижней стороной радиатор прижимается к плате, то лучше считать рабочей только одну сторону основания, но мы предположим, что радиатор «висит в воздухе» (как часто и бывает) и поэтому площадь основания удваивается: Sосн = 2L1·L2. Площадь одного ребра (тоже с двух сторон): Sр = 2·L1·h, но к этой величине нужно еще прибавить боковые поверхности ребра, площадь которых равна Sбок = 2·h·δ. Ребер всего 6, поэтому общая площадь радиатора равна: S = Sосн + 6·Sр + 6·Sбок. Пусть L1 = 3 см, L2 = 5 см, h = 3 см, S = 0,2 см, тогда общая площадь такого радиатора 145 см2. Разумеется, это приближенный расчет (мы не учли, скажем, боковую поверхность основания), но для наших целей высокая точность и не требуется.

Вот два эмпирических способа для расчета рассеиваемой мощности в зависимости от площади поверхности, и пусть меня не слишком строго осудят за то, что никаких особенных научных выкладок вы здесь не увидите.

Способ первый и наипростейший — площадь охлаждающего радиатора должна составлять 10 см2 на каждый ватт выделяющейся мощности. Так что радиатор с приведенными на рис. 9.14 размерами, согласно этому правилу, может рассеять 14,5 Вт мощности — как раз под наш усилитель с некоторым запасом. И если вас не жмут размеры корпуса, то вы вполне можете ограничиться этим прикидочным расчетом.

Если же хотите подсчитать поточнее, то вот один из более сложных способов, который годится для радиаторов средних размеров (L1 = 20-180 мм, L2 = 40-125 мм).



Рис. 9.15.Эффективный коэффициент теплоотдачи ребристого радиатора в условиях свободной конвекции при различной длине ребра:

1 h = 32 мм;2 h = 20 мм; 3 h = 12,5 мм


Для оценки тепловой мощности радиатора можно использовать формулу

W= αэфф·θ·S, где:

□ W — мощность, рассеиваемая радиатором, Вт;

□ αэфф — эффективный коэффициент теплоотдачи, Вт/м2·°С (см. график на рис. 9.15);

□ θ — величина перегрева теплоотдающей поверхности, °С, θ = ТсТос (Тс — средняя температура поверхности радиатора, Тос — температура окружающей среды);

S — полная площадь теплоотдающей поверхности радиатора, м2.

Обратите внимание, что площадь в эту формулу подставляется в квадратных метрах, а не сантиметрах.

Итак, приступим: сначала зададимся желательным перегревом поверхности, выбрав не слишком большую величину, равную 30 °C. Грубо говоря, можно считать, что при температуре окружающей среды 30 °C, температура поверхности радиатора составит 60 °C. Если учесть, что разница между температурой радиатора и температурой кристалла транзистора или микросхемы при хорошем тепловом контакте (о котором далее) может составить примерно 5 °C, то это приемлемо для практически всех полупроводниковых приборов. Высота ребер h у нас составляет 30 мм, поэтому смотрим на верхнюю кривую из графика на рис. 9.15, откуда узнаем, что величина коэффициента теплоотдачи составит примерно 50 Вт/м2·°С. После вычислений получим, что W = 22 Вт. По простейшему правилу ранее мы получили 14,5 Вт, а сейчас, проведя более точные расчеты, мы можем несколько уменьшить площадь, тем самым сэкономив место в корпусе. Однако повторим, если место нас не жмет, то лучше всегда иметь запас.

Радиатор следует располагать вертикально, и ребра также должны располагаться вертикально (как на рисунке), а поверхность его нужно покрасить в черный цвет.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки