Читаем Занимательная электроника полностью

Теперь перейдем к транзистору VT3 вкупе с резистором R3. Эта простая и остроумная конструкция выполняет важнейшую функцию — она ограничивает выходной ток. Как это происходит? Обратите внимание, что весь выходной ток протекает через резистор R3, номинальное значение которого всего 0,3 Ом. В нормальном состоянии (например, на холостом ходу) падение напряжения на этом резисторе мало, поэтому транзистор VT3 закрыт, и весь этот фрагмент не оказывает никакого влияния на работу схемы. Когда же выходной ток достигает значения примерно 2 А, падение напряжения на нем достигает сакраментальных 0,6 В, транзистор VT3 приоткрывается и начинает шунтировать переход база-эмиттер силового транзистора VT2, призакрывая его. В результате схема приходит в равновесие — если бы VT3 приоткрылся еще больше, закрывая силовой транзистор, выходной ток бы упал, падение напряжения на R3 бы уменьшилось, VT3 бы призакрылся, ну и т. д. — и все застывает на уровне 2 А выходного тока, даже при коротком замыкании на выходе! Как только избыточная нагрузка на выходе будет снята, схема автоматически вернется в нормальный режим. Если вместо резистора R3 поставить переключатель с набором сопротивлений, то можно регулировать уровень стабилизации выходного тока. Так, набор резисторов 0,3; 0,6; 1,2; 2,4; 6 и 62 Ом дадут ряд ограничений тока на уровне 2; 1; 0,5, 0,25 А, 100 и 10 мА.

Кстати, к следящему транзистору VT3 никаких требований не предъявляется — т. е., вообще никаких — можно взять любой кремниевый транзистор, только он должен быть маломощным (чтобы не шунтировать силовой транзистор токами утечки) и не составным по схеме Дарлингтона. А вот силовой транзистор, наоборот, должен быть именно дарлингтоновский, с «супербетой».

В этой схеме есть одно, однако большое НО. Заключается оно в том, что при коротком замыкании на выходе все напряжение питания будет падать на переходе коллектор-эмиттер транзистора VT2 — ему больше просто некуда деваться. То есть, выделяющаяся мощность на VT2 составит аж целых 40 Вт! И в нормальном режиме при маленьких установленных выходных напряжениях (3 или 5 В) и максимальной нагрузке эта мощность будет практически такой же. В этом и заключается главный недостаток рассматриваемой схемы, общий для всех линейных стабилизаторов — крайне низкий КПД.

Есть, впрочем, немало способов этот КПД повысить. Продаю идею простейшего из них, который годится именно для стабилизатора с дискретным набором выходных напряжений: надо взять трансформатор нестабилизированного источника, от которого питается вся эта схема, с несколькими обмотками на разное напряжение, а к переключателю делителя добавить еще одно направление переключения так, чтобы при снижении напряжения на выходе напряжение питания стабилизатора также снижалось (с учетом того, что минимальный перепад между входом и выходом здесь должен составить не менее 4–5 В, а если используется стабилитрон, как на рис. 9.12, то напряжение на входе должно быть не меньше 12 В). Есть и более изощренные способы — скажем, регулировать действующее значение выпрямленного пульсирующего напряжения перед фильтром с помощью тиристорного моста. Но в таком случае схема настолько усложняется, что проще просто взять и построить импульсный источник.

И, наконец, несколько слов про основного нашего героя — операционный усилитель. Здесь указан классический ОУ типа μА741, который выпускается уже много десятков лет, и приведена нумерация выводов (цоколевка) для него. У него есть и отечественный аналог — КР140УД7 (учтите на будущее, что отечественные аналоги западных микросхем не всегда имеют ту же цоколевку, так что это на всякий случай надо проверять). Вообще же можно взять почти любой ОУ широкого применения с надлежащим допустимым питанием — но эти подробности мы будем рассматривать уже в главе 12.

В заключение этой темы — еще два слова о регулируемом двухполярном лабораторном источнике. Нет никакого смысла изобретать его специально — надо просто взять два одинаковых однополярных источника, разместить их в одном корпусе (и даже запитать их от одного трансформатора, но обязательно от разных вторичных обмоток), и вывести наружу все четыре выходные клеммы по отдельности. Соединяя «плюс» одного источника с «минусом» другого перемычкой, вы получаете общую «землю» двухполярного источника, убирая перемычку — имеете два раздельных однополярных.


Рассеивание тепла


Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки