Читаем Занимательная химия для детей и взрослых полностью

Быстрое увеличение давления паров с температурой (и, соответственно, интенсивность их окраски) использовал профессор химии Карлетонского колледжа (штат Миннесота) Ричард У. Раметте. Несколько граммов кристаллов йода он поместил в большую колбу и тщательно зацементировал ее горловину. Затем он поместил эту колбу горлом вниз среди камней на своем участке рядом с домом, расположенном в южной части штата Аризона. Ночью йод конденсировался, образуя на стенках красивый узор из мелких кристалликов. А когда утром всходило жаркое аризонское солнце (место, где живет Раметте, находится на широте Сирийской пустыни!) и раскаляло камни, йод частично возгонялся, и колба становилась красно-фиолетовой. Чем выше была температура, тем больше йода возгонялось, так что по интенсивности окраски профессор мог судить о температуре на улице, глядя на колбу прямо из окошка, а заодно любуясь цепью гор Санта-Рита вдали, пальмами и другой южной растительностью. Судя по интенсивности окраски паров йода, температура колбы во время фотографирования, возможно, превышала 50 °С.

Блуждания молекул и… людей

Опыты с йодом позволяют проникнуть в то, как движутся молекулы в результате диффузии в воздухе и в «свободном полете» в вакууме. Если на дно пробирки поместить кристаллический йод и начать нагревать его, то снизу будут подниматься тяжелые фиолетовые пары, которые медленно заполнят пробирку, частично оседая на более холодных стенках в виде мелких кристалликов. Если же поместить кристаллы йода на дно стеклянной ампулы, выкачать из нее с помощью хорошего насоса воздух до очень малого остаточного давления, а потом герметично запаять, то при нагревании донышка ампулы никаких паров в ней не замечается, но на холодных стенках немедленно начинают оседать мельчайшие серые кристаллики йода. Если в ампуле находится не мелкий порошок йода, а один крупный кристалл (такой кристалл вырастет сам по себе, если вакуумированную ампулу оставить в покое на несколько месяцев), то при нагревании донышка ампулы небольшим пламенем кристалл начинает смешно дрожать и подпрыгивать. А так как йод очень тяжелый (плотность 4,94 г/см3, почти вдвое больше, чем у гранита), в тишине отчетливо слышен стук. Как объяснить все эти явления?

При нагревании кристалла молекулы йода начинают намного быстрее отрываться от его поверхности. Если в ампуле воздух, то из-за столкновений с молекулами О2 и N2 молекулы I2 могут снова вернуться и прилипнуть к поверхности. Если же в сосуде вакуум, такого шанса у молекул йода нет, и они будут лететь прямолинейно и равномерно, пока не столкнутся со стенкой, к которой и прилипнут (стенка холодная).

Быстро ли летят молекулы? Эта задача была решена еще в XIX в., когда трудами Джеймса Максвелла, Людвига Больцмана, других ученых была создана молекулярно-кинетическая теория газов. В соответствии с этой теорией средняя скорость молекул , где М – молекулярная масса газа (кг/моль), R – газовая постоянная (8,31 Дж/(моль К)), T – абсолютная температура. Как известно, кинетическая энергия тела, в том числе и молекулы, определяется формулой Е = Mu2/2. Подставляя в эту формулу выражение для u, получаем: Е = 3/2, т. е. энергия молекул не зависит от их массы, а только от температуры. По этому поводу Максвелл в своем докладе «Пояснения к динамической теории газов», сделанном в 1859 г., сказал: «Динамическая теория говорит нам также и о том, что происходит, когда молекулы различных масс сталкиваются друг с другом. Бо́льшие массы будут двигаться медленнее меньших, так что в среднем каждая молекула, большая или малая, будет иметь ту же энергию движения».

Если в формулу для средней скорости молекул подставить приведенное значение R, а молекулярную массу выражать в более привычных для химиков единицах (г/моль), то получим формулу . По этой формуле нетрудно рассчитать, с какой скоростью движутся в газе разные молекулы. Сразу видно, что чем выше температура и чем легче молекулы, тем быстрее они движутся. Но эта зависимость не очень сильная, так как величины М и Т находятся под знаком корня.

Рассчитаем, например, с какой скоростью движутся при комнатной температуре (Т = 293 К) молекулы самого легкого газа, водорода, – М = 2 г/моль. Из формулы получаем удивительный результат: u = 1,94 км/с – намного быстрее пули! Самые тяжелые молекулы UF6 с М = 352 (это вещество в виде газа используют для разделения изотопов урана) движутся при комнатной температуре, со средней скоростью около 145 м/с. Небольшое повышение температуры, как следует из формулы, увеличивает скорость молекул не очень сильно. Так, при 55 °С (328 К) давление паров над UF6 достигает 1 атм, и при этой температуре молекулы вещества в газе движутся со средней скоростью около 155 м/с, т. е. лишь немного быстрее.

Перейти на страницу:

Все книги серии Библиотека Аванты+

Похожие книги

Что знает рыба
Что знает рыба

«Рыбы – не просто живые существа: это индивидуумы, обладающие личностью и строящие отношения с другими. Они могут учиться, воспринимать информацию и изобретать новое, успокаивать друг друга и строить планы на будущее. Они способны получать удовольствие, находиться в игривом настроении, ощущать страх, боль и радость. Это не просто умные, но и сознающие, общительные, социальные, способные использовать инструменты коммуникации, добродетельные и даже беспринципные существа. Цель моей книги – позволить им высказаться так, как было невозможно в прошлом. Благодаря значительным достижениям в области этологии, социобиологии, нейробиологии и экологии мы можем лучше понять, на что похож мир для самих рыб, как они воспринимают его, чувствуют и познают на собственном опыте». (Джонатан Бэлкомб)

Джонатан Бэлкомб

Научная литература