Читаем Занимательная химия для детей и взрослых полностью

Остроумные физики вскоре обозвали случайные блуждания молекулы или броуновской частицы «прогулкой пьяницы» (по-английски the drunkard’s walk), причем с помощью этой «модели» оказалось возможным легко и наглядно вывести основную формулу для диффузии. В такой необычной форме задача о случайных блужданиях звучит так. Поздно вечером из кабачка, расположенного в середине улицы (пункт 0), вышел подвыпивший моряк и направился… допустим, к ближайшей остановке; обе они находятся в нескольких сотнях метров по обе стороны от кабачка. Улица освещена фонарями на столбах, расстояние между которыми равно λ. Моряк не помнит, в какую сторону нужно идти от пункта 0, и выбирает направление произвольно. Дойдя до ближайшего фонаря, он немного отдыхает, ухватившись за столб, а потом идет дальше, до следующего фонаря, а так как он не помнит, откуда пришел, то может направиться в любую сторону с равной вероятностью. Спрашивается, дойдет ли он в конце концов до какой-нибудь остановки или так и будет совершать колебания около начального пункта 0, то удаляясь ненамного от него, то опять приближаясь?

Решение этой строго научной задачи такое: постепенно моряк будет все дальше удаляться от начального пункта, хотя и значительно медленнее, чем если бы он двигался только в одну сторону. Это можно показать достаточно простым способом.

Нам нужно выразить расстояние SN от нулевой точки до местоположения моряка после N его блужданий от одного фонаря до другого, если известно среднее расстояние между столбами λ. (Отметим сразу, что для молекулы величина S соответствует диффузионному смещению – расстоянию, на которое продвинутся пары йода в воздухе или окрашенные ионы в воде; величина λ соответствует среднему свободному пробегу молекулы – расстоянию, которое она пролетает в свободном полете от одного столкновения до другого; величина N соответствует числу столкновений за определенное время – время, за которое диффузия прошла на расстояние S.)

А теперь немного простой математики. Дойдя до первого фонаря, моряк пройдет расстояние S1 = ±λ: + λ, если он пошел вправо, и – λ, если пошел влево от точки 0. Но нам не важно, в какую сторону пошел моряк, а важно только, какое расстояние он прошел. Чтобы избавиться от знаков, возведем обе части этого равенства в квадрат: S12 = λ2.

Пусть теперь, совершив N – 1 таких блужданий, моряк оказался на расстоянии SN–1 от начала. Пройдя до следующего фонаря, он очутится либо дальше, либо ближе к точке 0, т. е. SN = SN–1± λ.

Избавляемся от неопределенности в знаках таким способом. Возводим обе части равенства в квадрат: (SN)2 = (SN–1)2 ± 2λSN–1 + λ2. Теперь представим себе, что моряк много раз совершил единичное блуждание от точки SN–1 к точке SN. В половине случаев, когда точка SN расположена дальше, чем точка SN–1, мы получим (SN)2 = (SN–1)2 + 2λSN–1 + λ2, а в половине случаев, когда точка SN расположена ближе к началу, чем точка SN–1, мы получим (SN)2 = = (SN–1)2 – 2λSN + λ2. Таким образом, плюсы и минусы взаимно сократятся, и в среднем квадрат удаления после N-го блуждания будет равен (SN)2 = (SN–1)2 + λ2.

Исходя из этой формулы и учитывая, что S12 = λ2, получаем, что S22 = S12 + λ2 = 2λ2 (квадрат предыдущего значения плюс λ2), S32 = = 3λ2 и т. д. То есть квадрат смещения после N-го блуждания (SN)2 = Nλ2 или  .

Вот мы и получили основную формулу для процесса случайных блужданий. Из нее следует, например, что трезвый моряк, идущий все время в одном направлении, пройдя N = 100 столбов, расстояние между которыми λ = 20 м, удалится от точки 0 на 2000 м = 2 км. Подвыпивший же моряк удалится от начала всего на . Но все же в какую-нибудь сторону удалится!

Другой пример. Многие, возможно, замечали, что шнур от телефонной трубки часто очень сильно закручен в одну сторону. Причина может быть та же: если много раз снимать трубку, а потом класть ее на рычаг, случайно повернув то в одну сторону, то в другую, то в конце концов трубка окажется много раз повернутой в какую-нибудь одну сторону, и для распрямления провода его придется раскручивать.

Теория случайных блужданий имеет и более важное практическое приложение. Говорят, что без компаса и в отсутствие ориентиров (солнце, звезды, шум шоссе или железной дороги и т. п.) человек бродит в лесу, по полю в буране или в густом тумане кругами, все время возвращаясь на прежнее место. На самом деле он ходит не кругами, а примерно так, как движутся молекулы или броуновские частицы. На исходную точку он вернуться может, но только случайно. А вот свой путь он пересекает много раз – как броуновская частица на рисунке. Рассказывают также, что замерзших в пургу людей находили «в каком-нибудь километре» от ближайшего жилья или дороги. Однако на самом деле у человека не было никаких шансов пройти этот километр, и вот почему.

Перейти на страницу:

Все книги серии Библиотека Аванты+

Похожие книги

Что знает рыба
Что знает рыба

«Рыбы – не просто живые существа: это индивидуумы, обладающие личностью и строящие отношения с другими. Они могут учиться, воспринимать информацию и изобретать новое, успокаивать друг друга и строить планы на будущее. Они способны получать удовольствие, находиться в игривом настроении, ощущать страх, боль и радость. Это не просто умные, но и сознающие, общительные, социальные, способные использовать инструменты коммуникации, добродетельные и даже беспринципные существа. Цель моей книги – позволить им высказаться так, как было невозможно в прошлом. Благодаря значительным достижениям в области этологии, социобиологии, нейробиологии и экологии мы можем лучше понять, на что похож мир для самих рыб, как они воспринимают его, чувствуют и познают на собственном опыте». (Джонатан Бэлкомб)

Джонатан Бэлкомб

Научная литература