Молекулы йода – одни из самых тяжелых (
Испарение в вакууме именно нижней части большого кристалла при сильном нагревании донышка ампулы объясняет и подпрыгивание этого кристалла. Вылетающие вниз с большой скоростью молекулы I2
создают реактивную тягу, приподнимающую кристалл. Но как только кристалл отрывается от горячей поверхности, он немного остывает, скорость испарения снижается, и кристалл падает на дно. После этого процесс повторяется.Посмотрим теперь, что происходит при нагревании кристаллического йода в ампуле с воздухом. Молекулы I2
, оторвавшись от поверхности и летя с огромной скоростью, тем не менее не могут улететь далеко, так как тут же сталкиваются с молекулами воздуха, которых огромное количество: примерно 2,5 · 1019 в 1 см3 при комнатной температуре и давлении 1 атм. После каждого столкновения молекула случайным образом изменяет направление своего движения, пролетая в среднем от одного столкновения до другого небольшое расстояние λ. Оказывается, путем простых экспериментов можно определить это расстояние (оно называется свободным пробегом), а также рассчитать, как часто данная молекула сталкивается с другими. Знать частоту столкновений очень важно, в частности, для химической кинетики – науки, которая изучает скорость химических реакций.Несмотря на то что молекулы воздуха все время «путаются под ногами» молекул йода (такое меткое выражение употребил лауреат Нобелевской премии по химии Николай Николаевич Семёнов), пары йода тем не менее распространяются все дальше от кристаллов. Это явление называется диффузией (слово происходит от
Задача о диффузионном движении молекулы очень похожа на задачу о броуновском движении. В 1827 г. английский ботаник Роберт Броун, наблюдая в микроскоп за взвешенными в воде мельчайшими частицами (например, за зернами, выделенными из клеток пыльцы некоторых растений), неожиданно обнаружил, что эти частицы непрерывно совершают хаотические движения. И лишь много десятилетий спустя ученые поняли, что это явление связано с беспорядочными ударами невидимых молекул воды. Когда, наблюдая за частицами в микроскоп, на носили на клетчатой бумаге их положение через определенное время (например, каждые полминуты), получались ломаные линии – такие, как приведены на рисунке. Оказалось, что очень малые частицы подвержены со всех сторон непрерывным ударам молекул воды и эти удары не компенсируют друг друга (как в случае больших частиц). Если бы мы могли следить за положением данной молекулы в ходе ее непрерывных соударений с другими и нанесли эти положения на бумагу, то получилась бы такая же картинка.
Зарисовка последовательных положений трех броуновских частиц (капельки камеди размером около 1 мкм в эмульсии), сделанная французским физиком Жаном Перреном в 1908 г.
В этом хаосе движений смогли разобраться в начале ХХ в. Альберт Эйнштейн и польский физик Мариан Смолуховский, которые решили задачу о случайных блужданиях молекулы (или очень маленькой частицы). Сравнивая движения молекул и броуновских частиц, Смолуховский отмечал, что «частицы, взвешенные в жидкой или газообразной среде, ведут себя так, как если бы они были