Читаем Занимательная микроэлектроника полностью

Рис. 11.4.Простейшее ПЗУ — преобразователь кода


Если на входе поставить дешифратор типа 561ИД1, то мы получим аналог микросхемы 561ИД5. Представьте себе, что первоначально на всех пересечениях между строками и столбцами диоды присутствовали — это вариант незаполненной памяти, в которой записаны все единицы. Затем мы взяли и каким-то образом (например, подачей высокого напряжения) разрушили те диоды, которые нам не нужны, в результате чего получили нужную конфигурацию. Эта схема не содержит активных элементов и потому возможности ее ограничены, например, выходы устройства, подающего активный высокий уровень по входным линиям, должны «тащить» всю нагрузку по зажиганию сегментов. Обычная микросхема ПЗУ построена на транзисторных ячейках и поэтому без всяких хитростей принимает и выдает обычные логические уровни. К тому же она включает в себя и дешифрирующую логику, поэтому на вход подается двоичный, а не десятичный код.

Постойте, а при чем тут ПЗУ вообще? Дело в том, что любое ПЗУ можно представить, как универсальный преобразователь кодов, если рассматривать входной код, как адрес ячейки, а код, получающийся на выходе — как содержимое этой ячейки. Причем удобство состоит в том, что изначально в ПЗУ не записано ничего (одни нули или единицы), и мы можем реализовать на нем любую логическую функцию, все зависит только от емкости. В том числе, такую простую, как преобразователь кодов. Или такую сложную, как операционная система Windows. Последнее мы каждый раз и делаем, когда устанавливаем Windows на компьютер, причем в качестве ПЗУ выступает жесткий диск. Из этого примера отчетливо видно, что каким бы сложным ни был алгоритм, он все равно в конечном итоге сводится к совокупности однозначных логических уравнений, которые можно реализовать как через ПЗУ, так и с помощью устройства памяти любого другого типа.


Общее устройство памяти


Общее устройство однобитной ячейки памяти (любого типа) показано на рис. 11.5.



Рис. 11.5.Общее устройство ЗУ с однобитным выходом


Из нее видно, что память всегда имеет матричную структуру. В данном случае матрица имеет 8 х 8 = 64 ячейки. На рис. 11.5 показано, как производится вывод и загрузка информации в память с помощью мультиплексоров/демультиплексоров (вроде 561КП2, см. главу 9). Код, поступающий на мультиплексор слева (х3 - х5) подключает к строке с номером, соответствующим этому коду, активирующий уровень напряжения (это может быть логическая единица или ноль, неважно). Код на верхнем мультиплексоре (х0 - х2) выбирает аналогичным образом столбец, в результате к выходу этого мультиплексора подключается ячейка, стоящая на пересечении выбранных строки и столбца.

Легко заметить, что сама по себе организация матрицы при таком однобитном доступе для внешнего мира не имеет значения. Если она будет выглядеть, как 4x16 или 32x2 или даже 64x1 — в любом случае код доступа (он называется адресным кодом) будет 6-разрядным, а выход один-единственный. Поэтому всем таким ЗУ приписывается организация Nx1 бит, где N — общее число битов. Для того чтобы получить байтную организацию, надо просто взять 8 таких микросхем и добавить к адресной линии еще три разряда, которыми через отдельный мультиплексор можно управлять выборкой одной из этих микросхем (для этого каждая такая микросхема имеет специальный вывод, называемый «выбор кристалла» — chip select, или CS). В данном примере мы получим в сумме 9 адресных разрядов, что соответствует емкости памяти (64 х 8 = 512 бит или 29). Один из битов можно использовать при этом для контроля четности, так что у нас получается хорошая модель типового модуля емкостью 256 байт, вроде тех, что были в упомянутом ILLIAC–IV. Большинство выпускаемых интегральных ЗУ также сложены из таких отдельных однобитных модулей (только в наше время уже значительно большей емкости) и имеют 8 или 16 параллельных выходов, но бывают кристаллы и с последовательным (побитным) доступом.

В качестве примера можно привести, скажем, ПЗУ с организацией 64Кх16 типа АТ27С1024 фирмы Atmel. Это однократно программируемое КМОП ПЗУ с напряжением питания 5 В и емкостью 1024 Мбита, что составляет 128 кбайт или 64 К двухбайтных слов (как мы увидим, такая организация очень удобна в качестве внешней памяти программ в контроллерах той же Atmel). Следует отметить, что в области микросхем памяти сложилась счастливая ситуация, когда все они, независимо от производителя и даже технологии, совпадают по выводам, разводка которых зависит только от организации матрицы (даже, как правило, не от объема!) и, соответственно, от применяемого корпуса (в данном случае — DIP-40). Для разных типов (RAM, ROM, EEPROM и т. д.) различается разводка выводов, управляющих процессом программирования, но можно спокойно заменять одну микросхему на другую (с той же организацией и, соответственно, в таком же корпусе) без переделки платы. Разводка выводов АТ27С1024 показана на рис. 11.6.



Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника