Читаем Занимательная микроэлектроника полностью

Ток заряда при этом достигал миллиампера— можете себе представить, каково было потребление всей схемы, если в ней одновременно заряжать хотя бы несколько тысяч ячеек. И хотя такой ток требовался на достаточно короткое время (впрочем, с точки зрения быстродействия схемы не такое уж и короткое — миллисекунды), но это было крупнейшим недостатком всех старых образцов подобной EPROM-памяти. Еще хуже другое, то, что и изолятор, и сам плавающий затвор такого «издевательства» долго не выдерживали, и постепенно деградировали, отчего число циклов стирания/записи было ограничено нескольким сотнями, максимум — тысячами. Во многих образцах flash-памяти даже более позднего времени была предусмотрена специальная схема для хранения карты «битых» ячеек — в точности так, как это делается для жестких дисков. В современных моделях с миллионами ячеек такая карта, кстати, тоже, как правило, имеется, однако число циклов стирания/записи теперь возросло до соген тысяч. Как этого удалось добиться?

Сначала посмотрим, как осуществлялось в этой схеме стирание. В UV-EPROM при облучении ультрафиолетом фотоны высокой энергии сообщали электронам на плавающем затворе достаточный импульс для того, чтобы они «прыгали» обратно на подложку самостоятельно, без каких-либо электрических воздействий. Первые образцы электрически стираемой памяти (EEPROM, Electrically Erasable Programmable ROM — «электрически стираемое перепрограммируемое ПЗУ», ЭСППЗУ) были созданы в компании Intel в конце 1970-х при непосредственном участии будущего основателя Atmel Джорджа Перлегоса. Он использовал «квантовый эффект туннелирования Фаулера — Нордхейма» (Fowler — Nordheim). За этим непонятным названием кроется довольно простое по сути (но очень сложное с физической точки зрения) явление: при достаточно тонкой пленке изолятора (ее толщину пришлось уменьшить с 50 до 10 нм) электроны, если их слегка «подтолкнуть» подачей не слишком высокого напряжения в нужном направлении, могут просачиваться через барьер, не «перепрыгивая» его. Сам процесс показан на рис. 11.10 вверху (обратите внимание на знак напряжения на управляющем электроде).



Рис. 11.10. Процесс стирания в элементарной ячейке EEPROM


Старые образцы EEPROM именно так и работали: запись производилась «горячей инжекцией», а стирание — «квантовым туннелированием». Оттого они были довольно сложны в эксплуатации — разработчики со стажем помнят, что первые микросхемы EEPROM требовали два, а то и три питающих напряжения, причем подавать их при записи и стирании требовалось в определенной последовательности. Мало того, цена таких чипов была в свете нынешних тенденций почти запредельной. Автор этих строк сам покупал в середине 1990-х полумегабитную (т. е. 64-килобайтную) энергонезависимую память по цене 20 долл. за микросхему. Не забудьте еще про «битые» ячейки, возникновение которых в процессе эксплуатации приходилось все время отслеживать. Неудивительно, что на этом фоне разработчики предпочитали более дешевую, удобную, скоростную и надежную статическую память (SRAM), пристраивая к ней резервное питание от литиевых батареек, которые к тому времени уже достаточно подешевели.

Превращение EEPROM во Flash происходило по трем разным направлениям. В первую очередь — в направлении совершенствования конструкции самой ячейки. Для начала избавились от самой «противной» стадии — «горячей инжекции». Вместо нее запись стали осуществлять «квантовым туннелированием», как и при стирании. На рис. 11.10 внизу показан этот процесс: если при открытом транзисторе подать на управляющий затвор достаточно высокое (но значительно меньшее, чем при «горячей инжекции») напряжение, то часть электронов, двигающихся через открытый транзистор от истока к стоку, «просочится» через изолятор и окажется на плавающем затворе. Потребление тока при записи снизилось на несколько порядков. Изолятор, правда, пришлось сделать еще тоньше, что обусловило довольно большие трудности с внедрением этой технологии в производство.

Второе направление — ячейку сделали несколько сложнее, пристроив к ней второй транзистор (обычный, не двухзатворный), который разделил вывод стока и считывающую шину всей микросхемы. Благодаря этому (вместе с отказом от «горячей инжекции») удалось добиться значительного повышения долговечности — до сотен тысяч, а в настоящее время и до миллионов циклов записи/стирания (правда, последнее — при наличии схем коррекции ошибок, которые замедляют работу памяти). Кроме того, схемы формирования высокого напряжения и соответствующие генераторы импульсов записи/стирания перенесли внутрь микросхемы, отчего пользоваться этими типами памяти стало несравненно удобнее, т. к. они стали питаться от одного напряжения (5 или 3,3 В).

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника