Читаем Занимательная микроэлектроника полностью

Рис. 11.6. Разводка выводов АТ27С1024


RAM


Традиционное название энергозависимых типов памяти, как и в случае ROM, следует признать довольно неудачным. RAM значит Random Access Memory, т. е. «память с произвольным доступом», по-русски это звучит как ЗУПВ — «запоминающее устройство с произвольной выборкой». Главным же признаком класса является не «произвольная выборка», а то, что при выключении питания память стирается. EEPROM (о которой далее), к примеру, тоже позволяет произвольную выборку и при записи, и при чтении. Но так сложилось исторически, и не нам нарушать традиции.

Устройства RAM делятся на две больших разновидности — статические и динамические ЗУПВ. Простейшее статическое ЗУПВ (SRAM, от слова «static») — это обычный триггер. И «защелки» из микросхемы 561ТМЗ, и регистры типа 561ИР2, и даже счетчик с предзагрузкой типа ИЕ11 (см. главу 9), — все это статические ЗУПВ с различными дополнительными функциями или без них. Регистры и доступная пользователю область ОЗУ (оперативного запоминающего устройства) микроконтроллеров, — все они также относятся к классу SRAM, и мы с ними еще познакомимся довольно близко.

По счастью, с динамическими разновидностями RAM (DRAM) нам в схемотехническом плане иметь дело не придется, но ввиду практической важности этой разновидности (на DRAM построена вся оперативная память компьютеров) стоит остановиться на ней подробнее. Устройство ячейки обычной DRAM показано на рис. 11.7, из которого видно, что ячейка состоит всего из одного транзистора и одного конденсатора Последний на схеме (рис. 11.7, а) выглядит маленьким, но на самом деле занимает места во много раз больше транзистора (рис. 11.7, б), только в основном вглубь кристалла. Потому ячейки DRAM можно сделать очень малых размеров, а, следовательно, упаковать их много на один кристалл, не теряя быстродействия.



Рис. 11.7. Устройство ячейки DRAM:

а — схематическое устройство; б — микрофотография среза кристалла DRAM (вытянутые вниз структуры — накопительные конденсаторы)


Как происходит чтение данных с такой ячейки? Для этого вы подаете высокий уровень на линию строк (см. рис. 11.7), транзистор открывается и заряд, хранящийся на конденсаторе данной ячейки, поступает на вход усилителя, установленного на выходе столбца. Отсутствие заряда на обкладках соответствует логическому нулю на выходе, а его наличие — логической единице. Обратите внимание, что подача высокого уровня на линию строк откроет все транзисторы выбранной строки, и данные окажутся на выходе усилителей по всем столбцам сразу. Естественно, при этом все подключенные конденсаторы почти немедленно разрядятся (если они были заряжены), отчего процедура чтения из памяти обязана заканчиваться регенерацией данных (как оно в действительности и происходит, причем совершенно автоматически).

На практике регенерация в первых IBM PC и заключалась в осуществлении «фиктивной» операции чтения данных каждые 15 мкс с помощью системного таймера. Естественно, в таком решении было много подводных камней. Во-первых, регенерация всей памяти занимает много времени, в течение которого ПК неработоспособен. Потому-то сигнал на регенерацию и подавался с такой большой частотой, ведь каждый раз проверялась всего 1/256 памяти, так что полный цикл восстановления занимал около 3,8 мс. Во-вторых, такое решение потенциально опасно: любая зловредная программа спокойно может попросту остановить системный таймер, отчего компьютер уже через несколько миллисекунд обязан впасть в полный «ступор». И все современные микросхемы DRAM занимаются восстановлением данных самостоятельно, да еще и так, чтобы не мешать основной задаче — процессам чтения/записи.

Впервые принцип DRAM — хранение информации на конденсаторах с периодической регенерацией — применил еще Дж. Атанасов в самом первом электронном компьютере ABC (1941 г.). А зачем вообще нужна регенерация? Ввиду микроскопических размеров и, соответственно, емкости конденсатора в ячейке DRAM записанная информация хранится всего лишь сотые доли секунды. Несмотря на высококачественные диэлектрики с огромным электрическим сопротивлением, заряд, состоящий в рядовом случае всего из нескольких сотен, максимум тысяч электронов, успевает утечь так быстро, что вы и глазом моргнуть не успеете.

Огромный плюс DRAM — простота и дешевизна. В отличие от нее, ячейка SRAM, как вы знаете, представляет собой D-триггер, и содержит много логических элементов, занимая большую площадь кристалла. Потому SRAM много дороже, но зато не требует никакой регенерации. Фирма Dallas (ныне объединенная с MAXIM) одно время выпускала микросхемы энергонезависимой памяти (и некоторые другие устройства на их основе), представлявшие собой обычную SRAM со встроенной прямо в чип литиевой батарейкой.


EPROM, EEPROM и Flash


Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника