Читаем Западная философия от истоков до наших дней. Т. 4. От романтизма до наших дней полностью

Отсюда следует возможность соотнесения любого эффекта ускорения с соответствующими гравитационными полями, что меняет геометрическую структуру пространства. Получается, что любая физическая проблема решается, в конечном счете, через изучение геометрических свойств пространства. Общая теория относительности включает в себя как элемент частную теорию относительности, сохраняя все ее выводы и присоединяя к ним новые, вытекающие из новых экспериментальных данных. Среди последних — точные траектории движения планет, искривление светового луча в гравитационном поле и смещение спектральных линий в зоне света, испускаемого звездами большой массы. Так был открыт путь развития «нормальной» науки со все более мощной разработкой математического аппарата, с одной стороны, и, с другой — с проверкой теоретических конструкций экспериментальными данными, что всегда давало позитивный результат. Из новейших экспериментов на эту тему наиболее интересными представляются те, что связаны с изучением гравитационных волн космического происхождения.

2.3. Квантовая теория

Другой путь исследований — изучение взаимодействия материи и радиации. Термин «квант» связывают с именем М. Планка (1858—1947). Это проблема «черного тела» (абстрактное математическое понятие для обозначения объекта, аккумулирующего всю энергию и превращающего ее в тепло). Функция, выражающая энергию абсолютно «черного тела», изменяющего температуру, оказалась несовместимой с термодинамикой, а значит, и классической механикой.

Решение Планка состояло в гипотезе, что энергия выделяется и аккумулируется материей не в форме непрерывной радиации, а только множеством порций определенного количества, пропорционального частоте радиации v и некой постоянной h (постоянная Планка). Количество Av названо «квантом энергии», а постоянная h — «квантом действия». Интересно с концептуальной точки зрения то, что Планк (как и Эйнштейн) не пытался согласовать свое открытие с экспериментальной очевидностью. Именно Эйнштейн дал первое обоснование теории Планка. Он предположил, что любая радиация квантуется. Частицу, соответствующую радиации с частотой v, имеющую энергию hv и количество движения h v/c, назвали фотоном. Так фотоэлектронный эффект был вписан в общую теорию и ею подтвержден.

В 1923 г. решена аналогичная проблема относительно испускания электронами гамма-лучей (эффект Комптона). Изучение структуры атома начато Томсоном (1856—1940) в 1897 г. с открытия электрона, заряд которого был определен в 1911 г. Р. Милликеном (1868—1953). Были предложены две различные модели. Согласно первой (Перрен), атом состоит из ядра, вокруг которого вращаются электроны (1901). Согласно второй (Кельвин), в положительно заряженном атоме электроны находятся в условиях равновесия (1902). Мы перед лицом двух соперничающих теорий — ядерной и неядерной. Первая теория победила благодаря историческому эксперименту Резерфорда (1871—1937) с пучком частиц (ядер гелия) и тончайшей золотой пластинкой.

Ситуацию с электронами попытался прояснить Н. Бор (1885— 1962). Он предположил, что электроны вращаются по круговым орбитам, рассчитываемым согласно законам энергетического квантования, и атомы принимают и испускают энергию с помощью электронов, прыгающих с одной орбиты на другую. Эта модель была усовершенствована Зоммерфельдом (1868—1951).

Первые подтверждения и частичные фальсификации были получены из спектроскопии. Однако опыты Штерна и Герлаха укрепили теорию Бора. Ясно, что эти идеи не могут не контрастировать с идеями Максвелла для макроскопических явлений. Но сам Н. Бор в 1916 г. во избежание потенциального противоречия предложил считать теорию Максвелла статическим описанием поведения большого числа элементарных компонентов. Это первая формулировка «принципа соответствия», ключевого для понимания и применения квантовой теории. Ситуация не слишком отличалась от характерной для прошлого века попытки преодолеть разрыв между макроскопической термодинамикой и микроскопической классической механикой.

В 1924 г. Луи де Бройль предположил, что каждой электромагнитной волне соответствует частица, и наоборот, любой частице с массой покоя т0 и скоростью v соответствует волна длиной k = h/m (0). Так было положено начало волновой механике. Основываясь на все более широкой экспериментальной базе, Бор предложил рассматривать каждый феномен в двух аспектах — корпускулярном и волновом, считая оба истинными и взаимодополняющими. Принцип дополнительности был сформулирован В. Гейзенбергом (1901— 1976), установившим точные пределы возможно одновременного определения величин, относящихся к двум дополнительным аспектам. Из принципа дополнительности следовало, например, что нельзя одновременно и точно определить импульс и координаты частицы. Волновая механика была систематизирована Шрёдингером (1887-1961) и М. Борном (1882-1960).

Перейти на страницу:

Похожие книги

Этика
Этика

«Этика» представляет собой базовый учебник для высших учебных заведений. Структура и подбор тем учебника позволяют преподавателю моделировать общие и специальные курсы по этике (истории этики и моральных учений, моральной философии, нормативной и прикладной этике) сообразно объему учебного времени, профилю учебного заведения и степени подготовленности студентов.Благодаря характеру предлагаемого материала, доступности изложения и прозрачности языка учебник может быть интересен в качестве «книги для чтения» для широкого читателя.Рекомендован Министерством образования РФ в качестве учебника для студентов высших учебных заведений.

Абдусалам Абдулкеримович Гусейнов , Абдусалам Гусейнов , Бенедикт Барух Спиноза , Бенедикт Спиноза , Константин Станиславский , Рубен Грантович Апресян

Философия / Прочее / Учебники и пособия / Учебники / Прочая документальная литература / Зарубежная классика / Образование и наука / Словари и Энциклопедии