Отсюда следует возможность соотнесения любого эффекта ускорения с соответствующими гравитационными полями, что меняет геометрическую структуру пространства. Получается, что любая физическая проблема решается, в конечном счете, через изучение геометрических свойств пространства. Общая теория относительности включает в себя как элемент частную теорию относительности, сохраняя все ее выводы и присоединяя к ним новые, вытекающие из новых экспериментальных данных. Среди последних — точные траектории движения планет, искривление светового луча в гравитационном поле и смещение спектральных линий в зоне света, испускаемого звездами большой массы. Так был открыт путь развития «нормальной» науки со все более мощной разработкой математического аппарата, с одной стороны, и, с другой — с проверкой теоретических конструкций экспериментальными данными, что всегда давало позитивный результат. Из новейших экспериментов на эту тему наиболее интересными представляются те, что связаны с изучением гравитационных волн космического происхождения.
2.3. Квантовая теория
Другой путь исследований — изучение взаимодействия материи и радиации. Термин «квант» связывают с именем М. Планка (1858—1947). Это проблема «черного тела» (абстрактное математическое понятие для обозначения объекта, аккумулирующего всю энергию и превращающего ее в тепло). Функция, выражающая энергию абсолютно «черного тела», изменяющего температуру, оказалась несовместимой с термодинамикой, а значит, и классической механикой.
Решение Планка состояло в гипотезе, что энергия выделяется и аккумулируется материей не в форме непрерывной радиации, а только множеством порций определенного количества, пропорционального частоте радиации v и некой постоянной
В 1923 г. решена аналогичная проблема относительно испускания электронами гамма-лучей (эффект Комптона). Изучение структуры атома начато Томсоном (1856—1940) в 1897 г. с открытия электрона, заряд которого был определен в 1911 г. Р. Милликеном (1868—1953). Были предложены две различные модели. Согласно первой (Перрен), атом состоит из ядра, вокруг которого вращаются электроны (1901). Согласно второй (Кельвин), в положительно заряженном атоме электроны находятся в условиях равновесия (1902). Мы перед лицом двух соперничающих теорий — ядерной и неядерной. Первая теория победила благодаря историческому эксперименту Резерфорда (1871—1937) с пучком частиц (ядер гелия) и тончайшей золотой пластинкой.
Ситуацию с электронами попытался прояснить Н. Бор (1885— 1962). Он предположил, что электроны вращаются по круговым орбитам, рассчитываемым согласно законам энергетического квантования, и атомы принимают и испускают энергию с помощью электронов, прыгающих с одной орбиты на другую. Эта модель была усовершенствована Зоммерфельдом (1868—1951).
Первые подтверждения и частичные фальсификации были получены из спектроскопии. Однако опыты Штерна и Герлаха укрепили теорию Бора. Ясно, что эти идеи не могут не контрастировать с идеями Максвелла для макроскопических явлений. Но сам Н. Бор в 1916 г. во избежание потенциального противоречия предложил считать теорию Максвелла статическим описанием поведения большого числа элементарных компонентов. Это первая формулировка «принципа соответствия», ключевого для понимания и применения квантовой теории. Ситуация не слишком отличалась от характерной для прошлого века попытки преодолеть разрыв между макроскопической термодинамикой и микроскопической классической механикой.
В 1924 г. Луи де Бройль предположил, что каждой электромагнитной волне соответствует частица, и наоборот, любой частице с массой покоя
Абдусалам Абдулкеримович Гусейнов , Абдусалам Гусейнов , Бенедикт Барух Спиноза , Бенедикт Спиноза , Константин Станиславский , Рубен Грантович Апресян
Философия / Прочее / Учебники и пособия / Учебники / Прочая документальная литература / Зарубежная классика / Образование и наука / Словари и Энциклопедии