{27 Поэтому Платон порицал последователей Евдокса, Архита и Менехма... — Речь идет о попытках решить так называемую «Делосскую задачу» об удвоении объема заданного куба с помощью циркуля и линейки — одну из трех «неразрешимых задач» древности. По широко известной легенде (сообщаемой и Плутархом), дельфийский оракул потребовал, как средство спасения от вспыхнувшего на Делосе мора, увеличить вдвое объем кубического жертвенника Аполлона: Плутарх вкладывает в уста Платона разъяснение, что тем самым «бог хотел побудить эллинов заняться геометрией» («О демоне Сократа» (7) 579 В сл.). Уже Гиппократ Хиосский свел решение задачи к нахождению двух средних пропорциональных между двумя заданными величинами: а : х = х : y = y: в где х — ребро удвоенного куба, x3 = a2 b, b = 2а. Архит Тарентский (V в. до н. э.) показал, что величину x можно найти, рассмотрев пересечение трех поверхностей — конуса, цилиндра и поверхности, полученной вращением окружности вокруг касательной к ней. Менехм во второй половине IV в. до п. э., обратившись к построению кривых, получающихся из пропорции Гиппократа, — ау = х2 , xy = ab и у2 = bх — представил их как плоские сечения конусов вращения — прямоугольного, тупоугольного и остроугольного. Ко времени Евклида считалось, что задача удвоения объема куба не разрешима циркулем и линейкой. Однако попытки ее решения обогатили математику исследованием конических сечений и алгебраических кривых высшего порядка (конхоида Никомеда, циссоида Диоклеса).
В данном пассаже Плутарха, повторяемом почти без изменений в жизнеописании Марцелла (14), использована эпиграмма Эратосфена (ср. Vorsokr. 47 А 15).}
{28 ...«бог всегда остается богом». — Неточная цитата из «Федра»: у Платона — «благодаря чему бог является божественным» (249 С).}
2. После Тиндара выступил его товарищ Флор, в шутку притворявшийся и объявлявший себя влюбленным в него. "Ты заслуживаешь благодарности, - сказал он, - произнеся речь, которая выражает не только твое, но общее мнение всех присутствующих. Ведь ты дал возможность показать, что Платон считал геометрию необходимой не для богов, а для нас: бог не нуждается в математическом образовании как средстве, уводящем разум от творимых вещей к вечным сущностям, ибо эти сущности находятся в нем самом и с ним и вокруг него. Но подумай вот о чем: не намекнул ли Платон, незаметно для тебя, на нечто тебе близкое, {29} подмешав к Сократу Ликурга не в меньшей степени, чем Пифагора, на что указывал Дикеарх. {30} Ты, конечно, знаешь, что Ликург отменил в Лакедемоне арифметическую пропорциональность как демократическую и охлократическую {31} [b] и ввел вместо нее геометрическую, подобающую разумной олигархии и конституционной монархии: в первом, арифметическом, случае все распределяется поровну, а во втором, геометрическом, по достоинству, так что избегается смешение всех без разбора и проводится отчетливое различие добрых и худых: каждый получает свое не по назначенному весу и не по жребию, а в соответствии со своими заслугами и недостатками. Такую пропорциональность, именуемую справедливостью (δίκη) и воздаянием (νέμεσις), дорогой Тиндар, вносит бог в распорядок вещей, и она учит нас справедливое принимать за равное ('ίsov), но не усматривать справедливость в равенстве: то равенство, которого добивается толпа, - величайшая из всех несправедливостей. Устраняя ее по мере [с] возможности, бог соблюдает воздаяние по достоинству, геометрически определяя закономерность соответствием с разумным началом".
{29 ...на нечто тебе близкое... — Тнндар, как следует из 717 Е, — лакедемонянин.}
{30 ...на что указывал Дикеарх. — FHG II 243.}
{31 ...арифметическую пропорциональность как демократическую и охлократическую... — О социальном понимании равенства см. примеч. 110 к книге II. Ср. в жизнеописании Солона (14) приписываемое Солону изречение «равенство не производит мятежа», цитируется также: Plu. De frat. am. 484 В.}