Очерченное логическое исчисление и было положено Джевонсом в основу работы его машины. Последняя представляла собой механическое устройство с клавиатурой {и поэтому получила название «логического пианино»). Ее работа основывалась на той идее, что всякое высказывание-посылку можно рассматривать как исключение альтернативных-вариантов; получение заключения из системы посылок состоит в отборе незабракованных альтернатив и в их компактном представлении, удобном для понимания.
Пусть даны три класса A, В и С. Мы можем ввести в рассмотрение класс A, а можем рассматривать дополнение к нему, то есть класс А'; в первом случае мы можем ввести в рассмотрение класс В и взять его пересечение с A, а можем взягь класс В' и т. д. Делая тоже самое для С, мы получим альтернатива (они носят название конституэнт): AВС, AВС', AВ'С, AВ'С',A'ВС, A'ВС', A'В'С, A'В'С'. Если соединить, все конституэнты знаком то мы получим формулу, выражающую универсальный класс: AВС ABC' AB'C AB'C' A'BC A'BC' A'B'C A'B'C' = V[16]. теперь пусть нам даны посылки из приведенного выше примера 2 (модус Celarent): В = ВС' и A = AВ. Их можно записать в другом виде: ВС = (поскольку, если ни одно В не есть С, то пересечение классов В и С пусто) и AB' = (так как если все A суть В, то пересечение A с дополнением к В не может быть не пустым).
Это означает, что альтернативы AВС и A'ВС обращаются в пустой класс в силу первой посылки (поскольку пересечение любого класса с пустым классом дает пустой класс), а альтернативы АВ'С и AВ'С'— в силу второй посылки. Таким образом, мы получаем: (*) AВС' A'ВС' A'В'С A'В'С' = V. Теперь очевидно, что AС должно быть пустым классом (что и будет означать A = AС', то есть «Ни одно A не есть С») — ведь конституэнты AВС и
Набор на клавиатуре машины Джевонса посылок этого умозаключения (клавиатура содержит клавиши для четырех переменных и их отрицаний) приводит к тому, что на ее выходном табло получается заключение. Но на этой машине можно решать и задачи другого рода: представлять логическое выражение в виде набора конституэнт; проверять равносильность выражений; упрощать логические формулы; устанавливать, какие утверждения о данном классе можно выразить в терминах некоторых других классов; определять гипотезы, из которых следует данное выражение; проверять правильность силлогизмов и т. д.
Машина Джевонса не освобождала, однако, логический вывод от участия «человеческой» логики: результат, который выдавала машина, нуждался в переформулировке. Кроме того, машина была логически маломощна, и хотя используя одновременно две машины, можно было решать более сложные задачи, тем не менее возможности придуманных Джевонсом процедур были весьма ограниченными. Главное ограничение состояло в том, что небогатой была сама логическая теория, лежавшая в их основе. Дальнейшее развитие автоматизации логических процедур, как мы увидим, оказалось существенно связанным с развитием самой логики.
3. ОБРЕТЕНИЕ ПИСЬМЕННОСТИ
Математизация логики ведет свое начало от работ Дж. Буля и А. Де Моргана, в которых логика обрела свой алфавит, свою орфографию и свою грамматику. С этого момента она перестала зависеть от породившего ее естественного языка и получила собственные, адекватные своим особенностям, средства выражения. Для логики началась эпоха письменности — ее конструкции стало возможным наносить на бумагу в виде компактных сочетаний символов, в виде формул, и открылась возможность перерабатывать эти сочетания символов по четко определенным правилам.
Как и изобретение письменности для естественного языка, это знаменовало революцию в развитии. Фактически была осуществлена первая часть мечты Лейбница, и хотя до реализации его главной цели — создания «автоматического рассуждения» — оставался еще огромный путь, одна из главных предпосылок достижения этой цели (в той мере, в которой она вообще достижима) была налицо.
Имя Джорджа Буля (1815—1864) в последнее время стало известно даже людям, далеким от математики и логики. Понятие «булевой алгебры» уже знакомо многим нематематикам и нелогикам, а понятие «булевской переменной» вошло в обиход программистов, операторов и всех, кто пользуется ЭВМ. В этом состоит залог бессмертия имени Буля, поскольку кибернетика будет входить в нашу жизнь все шире (точно так же, когда единицу тока назвали ампером, имени великого французского физика навсегда суждено было войти в языки всех народов — вскоре наступил век электричества). Однако при жизни — да и долго после смерти — профессор математики из ирландского города Корка Джордж Буль, автор основополагающих для математической логики трудов «Математический анализ логики» (1847) и «Исследование законов мысли» (1854)[1] не считался человеком, внесшим большой вклад в науку, и его имя было известно лишь узким специалистам.