Читаем Жар холодных числ и пафос бесстрастной логики полностью

В цитированном же отрывке из Платона (как и на протяжении всего «Парменида») фигурируют абстракции столь высокого уровня, что они не могут быть пригодными для обычной коммуникативной или информативной речи. Тем не менее Сократ уверенно оперирует этими абстракциями, а Парменид и Зенон большей частью одобрительно кивают головами, но иногда без особых церемоний прерывают его рассуждение и указывают, как нужно его исправить. В этих случаях они замечают в рассуждении Сократа какую-то ошибку, улавливают промах. Вот это-то и может показаться самым поразительным: ведь разговор идет о настолько непонятных и туманных объектах, что, казалось бы, им можно приписать какие угодно свойства и какое угодно поведение.

Сократ же, Зенон и Парменид так не считают - они уверены, что поведение их объектов предопределено единственным образом, как поведение сталкивающихся материальных шаров, и что философ не изобретает это поведение, произвольно приписывая его объектам, а лишь познает его. Следовательно, они убеждены, что поведением объектов, о которых они рассуждают, управляет не человек, а что-то внешнее, не зависящее от человека. Но что?

Тут мы и подошли к главному пункту. Поведение таких абстракций, как «подобное», «многое» и т. д., становится предопределенным с того момента, когда их впервые вплетают в речевую ткань, вставляют в определенный контекст рассуждения, поскольку дальше вступают в действие формальные законы построения суждений и умозаключений, то есть формальная логика, заданная в человеческой мысли и «материализованная» в языке. Логика (запомним это особо!), хотя и принадлежит людям и создана ими (вместе с языком), является объективной данностью.

Во-первых, логика формировалась очень медленно и постепенно, ее создавали тысячи поколений людей, и никто из живущих, как и все живущие совместно, изменить ее не могут.

Во-вторых, логика утвердилась в мышлении независимо от языковой деятельности людей и даже замечена-то была сравнительно поздно, поэтому субъективным образованием считать ее никак нельзя.

В-третьих, были веские объективные причины для появления логики — это необходимость фиксации наиболее общих свойств и отношений между предметами и явлениями реальности — свойств и отношений, подобных тем, что если какой-то (любой) объект есть часть какого-то другого объекта, а этот объект, в свою очередь, есть часть какого-то третьего объекта, то первый объект есть часть третьего объекта; что ни один предмет не может одновременно обладать каким-то признаком и не обладать им, и т. п.

В конце разбираемого нами разговора великий Парменид поучает неопытного еще в философии Сократа. Он говорит юноше: «Твое рвение к рассуждениям, будь уверен, прекрасно и божественно, но, пока ты еще молод, постарайся поупражняться побольше в том, что большинство считает и называет пустословием; в противном случае истина будет от тебя ускользать»[8]. Эти слова дают исчерпывающий ответ на наш вопрос о средствах, с помощью которых Платон формулирует свою теорию. «Пустословие» — это, конечно, рассуждения об абстрактных понятиях. Упражняться в нем следует для того, чтобы не делать в рассуждениях формальных ошибок. А если этих ошибок не будет, то рассуждение приведет тебя к истине. Таким образом, у Платона и его школу, как и у многочисленных его предшественников (в частности, у элеатов), логика выступает как главный инструмент познания.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика