Читаем Жар холодных числ и пафос бесстрастной логики полностью

Сравним эту научную методику с современной. Ее идеал хорошо передан упоминавшимися выше словами Канта; во всяком случае для переработки, сохранения и передачи научной информации мы считаем теперь чрезвычайно полезной если не математическую, то уж во вся ком случае четко разработанную символику. Употребляя принятые в наше время обороты, можно сказать, что наука все более обрастает формализованными языками, источником которых большей частью является математика. Иногда такие языки, в отличие от обычных разговорных, «естественных» языков, называют «искусственными», однако такое противопоставление не очень убедительно. Иллюзия «искусственности» языка математики возникает из-за того, что, как мы хорошо знаем, некоторые великие ученые (например, Лейбниц) вносили определенные усовершенствования в математический язык, иногда очень существенные. Но ведь великие поэты тоже совершенствовали родной язык, изобретали новые слова, речевые обороты, а в отдельных случаях оказывали огромное влияние на процесс преобразования всего языкового стиля. Можем ли мы на этом основании назвать русский, или английский, или немецкий, или китайский язык «сделанным»? Конечно, нет, и здесь можно повторить все то, что мы говорили о «стихийном» создании формальных логических правил. Язык математики создавался на протяжении тысяч лет. Его формирование подчинялось не капризам или фантазиям отдельных математиков. а не зависящим от отдельных людей факторам. Если бы Франсуа Виет не ввел буквенные обозначения для величин в уравнениях алгебры, их ввел бы кто-то другой. Если бы не было Ньютона, дифференциальное и интегральное исчисление все равно бы возникло и при этом примерно в то же самое время; здесь мы даже можем сказать, кто был бы тогда его единоличным создателем — Лейбниц. И так обстоит дело в любой отрасли математики — как в области ее идей. так и в ее языке. Новое достижение появляется (и даже облачается во вполне определенную форму) тогда, когда приходит для этого время, когда перед этим оно «носится в воздухе».

Язык математики ценен для науки не потому, что он изобретен искусственно, а потому, что он не обладает теми свойствами обычного языка, которые делают его мало приспособленным для научного использования, и обладает такими свойствами, которые очень ценны для развития науки. Естественный язык, сложившийся в историческом процессе как коммуникативное и информативное средство, сугубо модален и эмоционален. Он великолепно приспособлен для передачи внутреннего состояния человека, для воздействия на других людей путем возбуждения в них соответствующих чувств, но мало пригоден для точного, бесстрастного научного анализа, поскольку его элементы не обладают однозначностью смысла, имеют массу трудноуловимых оттенков, поскольку в нем имеются омонимичные выражения, а его слова меняют свое значение со временем, иногда приобретая прямо противоположный смысл. Короче, естественный язык не подходит для точных и аналитических наук как средство исследования из-за его слабой формализованности.

Так что же оставалось делать Платону или элеатам? Использовать тот примитивный математический язык, который существовал в их время? Он был слишком маломощен для тех серьезных целей, которые ставили перед собой эти философы: они ведь стремились исследовать основные проблемы бытия и духа. И они нашли выход: в обычном человеческом мышлении и его выражении — естественном языке (в целом неподходящем для их серьезных задач) они отыскали такую часть, бесстрастную и однозначно действующую, которая нужна для их целей, логику. Эта часть мышления и языка, хотя она и не была формализован а, то есть представлена с помощью какой-либо символики, тем не менее была достаточно надежна, поскольку состояла из правил — схем, форм рассуждений, фактически всегда присутствующих в мышлении и языке (отсюда прилагательное «формальная» в термине «формальная логика»). Учитывая это, можно сказать, что работы Платона (и других эллинских мыслителей того же ранга) удовлетворяют «критерию научности» Канта в том смысле, что проведены они с помощью схематизма (формализма) логики, употребляемого как инструмент научного исследования. Для строгого согласия с Кантом, правда, нужно признать этот формализм принадлежащим математике. Допущение, что в логических (то есть мыслительных, относящихся к рассуждениям) формах обычного языка с древнейших времен был заложен математический аппарат, ещё недавно показалось бы странным. Однако сейчас, в эпоху великого соединения математики и логики, это уже не удивляет.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика