Читаем Жар холодных числ и пафос бесстрастной логики полностью

Проследим, в чем выражался не «общий» платонизму о котором говорит Рассел в приведенном отрывке, а именно математический платонизм. Эта разновидность платонизма очень четко проявилась в следующих словах одного из виднейших математиков прошлого века — Шарля Эрмита (1822—1901): «Я верю, что числа и функций анализа не являются произвольным созданием нашего разума; я думаю, что они существуют вне нас в силу той же необходимости, как и объекты реального мира, и мы их встречаем идя их открываем и изучаем точно так, как это делают физики, химики или зоологи»[11]. Эти слова означают, что числа и функции похожи не на приборы и инструменты, — скажем, на счетчик Гейгера или масс-спектограф Астона, которые придумали люди» а на виды растений или животных, скажем, на баобаб или кенгуру, которые существуют фактически, независимо от желания человека от знания человека об их существовании и которые человек со временем лишь обнаруживает.

Первая причина таких представлений указана Расселом — это впечатление вечности, неизменности и совершенства, которое производят математические объекты. Ключ к пониманию второй причины содержится в приведенной цитате из Эрмита, в его словах «существуют в силу необходимости». Смысл, который обычно вкладывается в эти слова, достаточно прост. Если мы, скажем, возводим двойку в десятую степень, то получаем число 1024 абсолютно независимо от нашего желания — необходимым образом; значит, тот факт, что 210 = 1024, имел место и до того как мы начали вычисление, и даже до того как появились люди на Земле. Возьмем другой, более «научный» пример. В свое время перед математиками стояла задача о решении общего уравнения третьей степени, но попытки справиться с ней не увенчивались успехом. Наконец, в 1545 году Джироламо Кардано (1501—1576) в упоминавшейся уже нами (с. 34) работе «Великое искусство...» изложил (открытый ранее Н. Тартальей) метод нахождения корней произвольного кубического уравнения[12]. Проблема была закрыта.

Поставим вопрос: существовали ли корни у произвольного кубического уравнения до Тартальи и Кардано? По-видимому, в каком-то смысле, да, ибо если бы он их «изобрел», то почему они обладают именно данными свойствами и не могут обладать свойствами, несовместимыми с установленными этими математиками?

Как мы видим, ситуация не так проста, как может показаться на первый взгляд. В XIX столетии, когда математические работы полились рекой, ощущение «открывания» стало особенно сильным и сказалось на математическом мировоззрении.

Работая изо дня в день с числами, функциями и уравнениями, любой математик всегда воспринимает их как внешнюю данность. Для «математического платоникам эта данность становится абсолютной. Но, как ни странно, на определенном этапе развития науки эта разновидность догматизма сыграла свою положительную роль. На это обратил внимание уже цитировавшийся нами Ласло Кальмар, который указал на то, что «платонистская» объективизация математических идей «защищала их от отторжения здравым смыслом как иллюзорных и стимулировала развитие математики до той поры, пока математики и философы не смогли лучше понять сущность — и пользу абстракции»[13].

К тому времени, когда была создана теория дедекиндовых сечений, точка зрения математиков на то, какие объекты в их науке более всех «существуют сами по себе», вырисовалась совершенно отчетливо. Математики по молчаливому соглашению выделили главную «платоновскую идею» - математический объект, занявший в иерархии рассматриваемых ими существований центральное положение. Этим объектом стало «множество». В математической науке наступила эпоха теоретико-множественного мышления.

Действительно, «множественный» подход пронизывал теорию Дедекинда. Теория сечений становится убедительным определением действительных чисел, если идея множества — неважно, конечного, бесконечного, построенного фактически или только обрисованного самыми общими словами, представляется чем-то абсолютно ясных, конкретно данным и существующим в той же мере, в какой существует написанная на бумаге буква; ибо она сводит действительные числа к двум классам сечения, а классы — это множества, мыслимые как некие единичные «вещи».

Эта идейная установка естественным образом вырастала из практики самой теоретической математики того времени. В анализе постоянно встречались множества — множества первообразных, множества решений уравнения, множества интегралов, множества дифференциальных уравнений данного типа, множества самосопряженных операторов, множества квадратичных форм от n переменных и т.д. Этот список можно было бы продолжать сколько угодно долго, и не удивительно, что в сознании математиков оформилась идея множества вообще. Завершающий шаг в сторону математического платонизма состоял в том, что эта идея стала казаться понятием самым ясным и доступным среди всех понятий, которыми оперирует матемагическое мышление.(опечатку исправлять не буду. w_cat)

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика