Наше допущение означает, что рассматриваемое множество чисел счетно. Однако легко построить число, принадлежащее рассматриваемому множеству, но никакого номера в нашей системе нумерации не имеющее. Напишем нуль и поставим после него запятую. Для определений первой цифры после запятой поступим следующим образом. Рассмотрим первую после запятой цифру в первой числе а1 и, если эта цифра выражает четное число, то в новое число впишем цифру 5, в противном случае впишет цифру 6. Чтобы определить вторую цифру после запятой нового числа, возьмем вторую цифру после запятой числа a2 и поступим по точно такому же правилу. Продолжая эту процедуру, то есть беря третью цифру после запятой, третьего числа, четвертую цифру после запятой четвертого числа и т. д., мы будем строить по указанному. правилу десятичные знаки некоторого числа A (в нашем примере его «начало» выглядит так: 0,5665 ...). Число a, очевидно, принадлежит к рассматриваемому множеству, ибо оно заключено между нулем и единицей. С другой стороны, оно не охвачено нашей нумерацией, так как отличается от любого из занумерованных чисел хотя бы в одном десятичном знаке, а именно — оно имеет другую цифру в том разряде, который «изготовлялся» по данному числу. Но выше предполагалось, что нашей нумерацией охвачены рее действительные числа. Мы пришли к противоречию. Значит, наше допущение неверно: множество всех положительных действительных чисел, не превосходящих единицу, не является счетным (такое множество называется
Итак, действительных чисел в каком-то смысле больше, чем натуральных: по какому бы закону мы ни нумеровали натуральными числами множество всех действительных чисел, всегда найдется хотя бы одно действительное число (на самом деле даже бесчисленное множество чисел), которое будет «забыто», оно не только не получит индекса достаточно быстро, но даже не будет поставлено «на очередь». Конечно, можно изменить весь принцип нумерации и включить это число в систему раздачи индексов, но тогда обязательно будет «обижено» какое-нибудь другое число.
Установив поразительный факт неодинаковой «мощности» бесконечных множеств. Кантор открыл для математики новый мир. Вскоре выяснилось, что множество действительных чисел (континуум) — далеко не самое мощное: его превосходит по мощности, например, множество всех действительных функций одной переменной, заданных на единичном отрезке. Вообще, Кантор показал, что по множеству данной мощности всегда можно построить еще более мощное множество—для этого достаточно взять множество всех подмножеств данного множества[16].
В письмах и статьях Кантора, в комментариях к его математическим работам не раз встречаются фразы, из которых можно заключить, что Кантор возводил свое Mengenlehre как бы вопреки собственной воле, на каждом этапе работы изумляясь полученному результату, как будто противоречащему интуиции и здравому смыслу. Действительно мышление в терминах множеств, обретя дарованный ему Кантором четкий аппарат, стало «теоретико-множественным» мышлением и отныне должно было развиваться уже независимо от психологических факторов, как развивается всякая математическая теория. Хотели этого иди не хотели математики, но в новой теории сами собой возникали уходящие в неоглядную даль вереницы множеств множеств множеств, множеств множеств множеств...
Конечно, с самого начала этой «вакханалии множеств были математики, которые смотрели на нее неодобрительно. Таким был, например, Леопольд Кронекер (1823—1891). Но доказательства Кантора были безупречными по всем принятым тогда стандартам. Поэтому самая сильная форма протеста тогда была не убедительнее восклицания самого Кантора: «Вижу, но не верю!»