Так к началу 50-х годов нашего века, то есть к моменту выхода на сцену электронных вычислительных машин, как итог развития всей предшествующей математики и логики и как непосредственный результат работ Чёрча, Тьюринга и Маркова, стал вырисовываться обширный комплекс процессов, обладающих следующими особенностями.
1. Они в принципе строго детерминированы, то есть каждый предыдущий этап полностью определяет последующий.
2. Они потенциально осуществимы — в том смысле, что при достаточно долгом протекании без внешних помех они приводят (могут приводить) к фактическому результату.
3. Они имеют «атомарное» строение — складываются из совокупности элементарных операций, которых имеется всего несколько видов.
4. Элементарные операции, сочетание которых порождает бесконечное разнообразие таких процессов, настолько хорошо обозримы, наглядны и соответствуют особенностям человеческого восприятия и мышления, что их нетрудно объяснить любому человеку.
А существуют ли в мире другие процессы?
Вопрос этот не случаен. В случае отрицательного ответа в сферу описанных процессов будут включены и явления. происходящие в нас самих, наша внутренняя жизнь. Эта возможность представляется оскорбительной, унижающей человеческое достоинство. Признать полную принципиальную детерминированность психических явлений - не значит ли это признать несвободу поведения человека? И разве можно какую-то заводящуюся ключом игрушку — машину Тьюринга — сопоставить с поведением вольной в своих поступках личности, например, с поведением и творческой работой Пушкина? Да не только Пушкин, разве любой из нас, самый скромный из нас, согласится признать, что его действия в каждую данную секунду, в каждую долю секунды, все его тончайшие помыслы, фантазии, мечты, стремления, эмоции могут быть описаны какими-то очень простыми рекурсивными функциями?
В этих возражениях проявляется естественная неприязнь человека к автоматизму, бездушию, слепому выполнению программы. Конечно, автоматизм в поведении человека отвратителен, и прожить, строго выполняя намеченную программу, просто невозможно. Конечно, все, даже фанатически преданные математике отшельники, не могли бы и дня просуществовать без неожиданных для самих себя поступков, без юмора — этого воплощения тяги к странности и непредвиденности. Все это так, но ведь речь идет не об этом. Вопрос ставится следующим образом: состоит ли грандиозно сложный процесс рождения, функционирования и умирания человека (как и любой другой процесс во Вселенной) из композиции гигантского числа рекурсивно описываемых процессов — подобно тому, как прекрасный цветок розы состоит (как физическое тело) из гигантского количества ничем не пахнущих и не имеющих цвета атомов?
В такой постановке проблема становится серьезной.
8. ВОЗМОЖНОСТИ ВЫЧИСЛИТЕЛЬНЫХ МАШИН И ЧЕЛОВЕК
Множественность типов вычислимости есть та основа, которая позволяет подвергнуть анализу запутанный клубок проблем, относящихся к вопросу: «Что может делать электронная вычислительная машина?». ЭВМ в первом приближении можно охарактеризовать как гигантский арифмометр, работающий с огромной скоростью. Однако это — только в первом приближении: по сравнению с арифмометром у ЭВМ имеются две принципиально важные конструктивные особенности.
Обычный арифмометр (например, марки «Феликс») после выполнения заданной ему операции сложения, умножения и т. д, прекращает работу и ждет дальнейших «распоряжений». Чтобы выполнить с помощью арифмометра действие над полученным результатом, нужно западе набрать последний на его клавиатуре и нажать на соответствующую кнопку, а если арифмометр не электрический, то покрутить ручку. Электронная вычислительная машина может повторять арифметическую операцию сколько угодно раз подряд, беря в качестве исходных данных числа, полученные ею на одном из предыдущих этапов. На арифмометре, например, легко можно прибавить к любому числу единицу, но чтобы после этого сделать еще что-то, требуется новое вмешательство человека.
ЭВМ же может быть введена в такой режим, когда она будет возвращаться к собственному результату без дальнейших распоряжений и станет осуществлять потенциально бесконечный процесс многократного применения функции «число, непосредственно следующее за...», то есть последовательного получения возрастающих натуральных чисел. Вторым отличием электронной вычислительной машины от обычного арифмометра является то, что она умеет выполнять простейший