Для рекурсивного аппарата этот термин, как мы выяснили, можно понимать так: «при условии, что имеется достаточно времени, чернил (или типографской краски) и бумаги для записи промежуточных данных». ЭВМ бумага для записи данных не нужна — она заносит их в магнитное или другое «физическое» запоминающее устройство, а время ей нужно так же, как и человеку, вооруженному авторучкой, несмотря на то, что ЭВМ производит вычислительные действия гораздо быстрее. Поэтому потенциальная осуществимость какого-то вычислительного процесса на ЭВМ должна пониматься как осуществимость при условии, что не будет наложено никаких ограничений на время работы машины и что машина имеет неограниченную память — память, которую в случае надобности можно всегда расширить путем добавления, например, нового магнитного барабана.
Будем называть вычислимость такого рода
Любое из утверждений такого рода может быть доказано вполне строго. Возникает вопрос: является ли ЭВМ-вычислимость более мощной, чем рекурсивная вычислимость, то есть может ли вычислительная машина сделать что-нибудь такое, чего нельзя сделать с помощью аппарата рекурсивных функций? Если строго рассмотреть этот вопрос, окажется, что он получает отрицательный ответ. ЭВМ-вычислимость эквивалентна рекурсивной вычислимости, а значит, эквивалентна также алгорифмической вычислимости (по Маркову) и вычислимости по Тьюрингу.
Как звучит соответствующий тезис? Очевидно, так: всякая конечная вычислительная (в частности, логическая, дедуктивная) процедура, характеризующаяся детерминированностью своего выполнения, может быть осуществлена на цифровой вычислительной машине с достаточно большой памятью за достаточно большое время.
Эквивалентность этого утверждения, которое можно назвать
Другими словами, не было случая, чтобы к математику, умеющему ставить задачи и программировать их для ввода в ЭВМ, пришел представитель какой-либо нематематической профессии — администратор, экономист, инженер, деятель искусства, ученый и т. д.— попросил бы его осуществить на машине процесс полностью детерминированного на каждом этапе вычисления, логического вывода, выделения некоторого объекта из некоторого множества объектов, расчета вариантов, выбора одних гипотез и исключения других и т. д., то есть процесс решения ясно и четко поставленной задачи из какой-то области деятельности, и чтобы математик совершенно ясно понял проблему, но ответил заказчику, что ее в принципе нельзя решить на ЭВМ. В худшем случае математик может ответить так: программа, соответствующая вашей задаче, на данной машине не пройдет, поскольку у машины слишком мал объем памяти и она слишком медленно работает, чтобы получить результат за разумное время.