Если посмотреть на математику должным образом, то окажется, что она обладает не только истиной, но и высшей красотой — красотой холодной и суровой, подобной красоте скульптуры, не обращенной ни к какой стороне нашей слабой натуры, лишенной украшений живописи или музыки, и тем не менее утонченно чистой и способной к строгому совершенству, свойственному лишь величайшим произведениям искусства.
В XX веке топология стала одним из столпов математики, заняв место рядом с алгеброй и анализом. Многие математики, не считающие себя топологами, используют топологию в повседневной работе. Это неизбежно. Сегодня аспиранты математических специальностей первого года обучения обязаны пройти годичный курс топологии.
Один из способов измерить важность области науки — посмотреть, какие награды вручаются за достижения в этой области. Нобелевских премий по математике не существует, но есть эквивалент — филдсовская премия. Филдсовскую премию вручают раз в четыре года, начиная с 1936 года (за исключением Второй мировой войны). На каждой церемонии медали вручаются не более чем четырем математикам не старше сорока лет, внесшим выдающийся вклад в математику. Из сорока восьми лауреатов примерно треть была отмечена за работы по топологии, а еще большее число — за вклад в смежные области.
В связи с одной конкретной топологической проблемой было вручено целых три филдсовских премии. Это одна из самых знаменитых нерешенных задач XX века — настолько важная и трудная, что математику, решившему ее, обещана награда 1 миллион долларов. Называется эта проблема
Теорема классификации поверхностей — одна из самых элегантных теорем во всей математике. Она утверждает, что любая поверхность однозначно определяется ориентируемостью, эйлеровой характеристикой и числом компонент края. Понятно, что было бы хорошо иметь подобную теорему для многообразий любой размерности, но это чрезвычайно сложная задача. Ясно, что если такая классификация и существует, то приведенного выше перечня недостаточно, поскольку характеристика Эйлера-Пуанкаре любого замкнутого многообразия нечетной размерности рана нулю (см. главу 23).
Пуанкаре мечтал о классификации многомерных многообразий, но даже в трехмерном случае эта задача не поддалась его усилиям. Гипотеза Пуанкаре стала только первым шагом в процессе этой классификации.
Простейшим замкнутым n-мерным многообразием является n-мерная сфера Sn
. Пуанкаре искал простой критерий, который позволил бы узнать, гомеоморфно ли данное n-мерное многообразие в сфере Sn. В 1900 г. он думал, что нашел такой критерий. Он доказал215, что любое n-мерное многообразие, гомологичное Sn, должно быть гомеоморфно Sn. Гомология n-мерной сферы особенно проста. Ее числа Бетти равны 1 для размерностей 0 и n, 0 для всех остальных размерностей, и зацепления нет.Через четыре года он понял, что доказательство содержало ошибку216
. И не только нашел собственную ошибку, но и обнаружил замечательный контпример к своему же утверждению. Он построил патологическое 3-мерное многообразие, имеющее такую же гомологию, как S3, но не гомеоформное S3. Для этого он склеил противоположные грани сплошного додекаэдра, повернув каждую на 36° по часовой стрелке.Интересное и неожиданное свойство
Из этого экзотического примера Пуанкаре сделал вывод, что одной гомологии недостаточно, чтобы охарактеризовать не только Sn
, но даже S3. Поэтому он отложил в сторону вопрос в n-мерном случае и сосредоточился на 3-мерных многообразиях. Он подозревал, что если все циклы на 3-мерном многообразии топологически тривиальны, то многообразие должно быть геомеоморфно S3. Это и стало содержанием знаменитой ныне гипотезы Пуанкаре217.На самом деле в статье Пуанкаре это утверждение выдвигалось не в виде гипотезы, а в виде вопроса. Он не сформулировал своего мнения о том, каким будет ответ. Доказательство этой теоремы, конечно, несопоставимо с классификацией всех трехмерных многообразий, но стало бы важным первым шагом.