Читаем Жемчужина Эйлера полностью

Для ориентируемых поверхностей количество таких циклов является первым числом Бетти, но для неориентируемых начинаются странности. Весь наш опыт подсказывает, что из уравнения a + a = 0 следует, что a = 0. Для вещественных чисел так оно и есть. Но для циклов может случиться, что a ≢ 0, но а + а ≡ 0. Вообще-то, такое явление в жизни не редкость. На многих автомобилях одометр рассчитан на расстояние до 99 999 километров. Для такого одометра 50 000 + 50 000 = 0. Другой пример — отсчет времени, принятый в армии. Полночь — это 0:00, полдень — 12:00, а время непосредственно перед полуночью — 23:59. Поэтому через 12 часов после 12:00 будет 0:00, или 12 + 12 = 0.

Чтобы увидеть эту странную арифметику в действии, вернемся к проективной плоскости и бутылке Клейна. На рис. 22.8 мы видели, что число связности проективной плоскости равно 1. Обозначим соответствующий цикл a и придадим ему ориентацию, как показано на рис. 23.4. Тогда a + a, или для краткости 2a, — это цикл, проходящий по a два раза. Удивительно, но, как видно по рисунку, этот удвоенный цикл действительно топологически тривиален — путем деформирования его можно стянуть в точку. Поэтому 2а = 0.

Рис. 23.4. Для проективной плоскости 2а = 0


То же самое имеет место для бутылки Клейна, но обоснование несколько отличается. Ранее мы видели, что число связности бутылки Клейна равно 2. Обозначим соответствующие циклы (ориентированные) b и c, как показано на рис. 23.5. Как видно, удвоенный цикл 2b эквивалентен b + c + (—b) + (—с). Иначе говоря, хотя 2b топологически не тривиален, все равно 2b 0.

Таким образом, мы можем разделить эти существенные циклы на два класса в зависимости от того, обладают они таким поведением или нет. Продолжим называть количество циклов, не обладающих таким поведением, 1-мерным числом Бетти. Если на поверхности существует цикл a, для которого na ≡ 0 (и n — наименьшее такое положительное число), то будем называть n коэффициентом зацепления поверхности. Следовательно, в 1-мерном случае для проективной плоскости число Бетти равно 0, а коэффициент зацепления равен 2, тогда как для бутылки Клейна число Бетти равно 1, а коэффициент зацепления равен 2.

Действуя похожим образом, Пуанкаре определил многомерные числа Бетти и коэффициенты зацепления, только в качестве циклов он использовал не петли, а многообразия более высокой размерности. Пуанкаре доказал, что числа Бетти и коэффициенты зацепления — топологические инварианты многообразий. В табл. 23.1 приведены числа Бетти и коэффициенты зацепления замкнутых поверхностей. Мы обозначаем bi i-е число Бетти[14].

Рис. 23.5. Для бутылки Клейна 2b = b + c + (—b) + (—с) = 0


Таблица 23.1. Числа Бетти и коэффициенты зацепления поверхностей

В «Analysis Situs» Пуанкаре следовал идеям Римана и Бетти. Но, отвечая на призыв к строгости, в последующих статьях он сменил направление. Именно тогда он начал работать с симплициальными комплексами, n-мерным обобщением многогранников. В этом контексте циклы в теории[18] гомологий строятся, исходя из особенностей многогранника. Например, 1-мерный цикл — это не произвольная петля на многообразии, а последовательность ребер многогранника, образующая петлю.

С практической точки зрения, работать с симплициальными комплексами гораздо проще, чем с первой моделью Пуанкаре. Пуанкаре мог описать комплекс в терминах матрицы инциденций — прямоугольного массива чисел, показывающего, какие симплексы являются соседними. Вычисление чисел Бетти и коэффициентов зацепления с помощью этих матриц стало чисто механическим процессом.

Располагая таким обобщением многогранников на многомерный случай, естественно задаться вопросом, можно ли обобщить эйлерову характеристику на многомерные многообразия. Пункаре, как Коши и Шлефли до него, обобщил эйлерову характеристику, вычислив знакопеременную сумму числа k-симплексов. Иными словами, если многообразие M представлено в виде симплициального комплекса с ak симплексами размерности k, то он определил эйлерову характеристику как

χ(M)) = a0 — a1 +a2 —… ± аn.

Это обобщение эйлеровой характеристики на n-мерное пространство называется характеристикой Эйлера-Пуанкаре многообразия M.

Например, сплошной тор является 3-мерным многообразием с краем (краем является тор, 2-мерное многообразие). На рис. 23.6 показано, как представить сплошной тор в виде симплициального комплекса. У него 12 вершин (0-симплексов), 36 ребер (1-симплексов), 36 граней (2-симплексов) и 12 треугольных пирамид (3-симплексов). Поэтому a0 = 12, a1 = 36, a2 = 36 и a3 = 12, так что характеристика Эйлера-Пуанкаре равна χ(сплошной тор) = 12–36 + 36–12 = 0.

Рис. 23.6. Симплициальный комплекс для сплошного тора


Перейти на страницу:

Похожие книги