Читаем Жемчужина Эйлера полностью

Наступил XX век, и внимание ученых обратилось к неизбежным множествам и приводимым конфигурациям. Неизбежным множеством называется набор конфигураций, из которых по меньшей мере одна должна присутствовать в каждом графе смежности. Например, теорема о пяти соседях дает простейшее неизбежное множество, показанное на рис. 14.11, — должна существовать вершина степени меньше 6.

Рис. 14.11. Неизбежное множество конфигураций


С другой стороны, приводимой конфигурацией называется набор вершин и ребер, которые не могут встречаться в минимальном злодее. Используя метод цепочек Кемпе, легко показать, что первые четыре конфигурации на рис. 14.11 приводимые. Мы можем удалить вершину, раскрасить оставшийся граф, при необходимости перекрасить его один раз с помощью цепочек Кемпе, а затем покрасить последнюю вершину. Пятая конфигурация составляет проблему.

Таким образом, целью стало нахождение неизбежного множества неприводимых конфигураций. Сделав это, мы доказали бы теорему о четырех красках, потому что это был бы набор конфигураций, которые не могут встречаться в минимальном злодее, но должны встречаться в любом графе смежности. Это противоречило бы существованию минимального злодея.

22 июля 1976 г., спустя почти сто лет после ошибочного доказательства Кемпе, два исследователя из Иллинойского университета, Кеннет Аппель (1932–2013) и Вольфганг Хакен (родился в 1928 г.), объявили, что нашли неизбежное множество, содержащее 1936 приводимых конфигураций. К моменту появления своих двух статей в следующем году они сумели упростить работу, исключив избыточность и уменьшив количество до 1482121. (Они также добавили в одну из статей третьего автора, Джона Коха, за помощь в вычислениях.) Теорема о четырех красках наконец-то пала!


Теорема о четырех красках

Любую карту можно раскрасить четырьмя или меньшим количеством цветов.


В конце лета 1976 года Хакен представил свою работу на совместном собрании Американского математического общества и Математической ассоциации Америки. В конце лекции аудитория не разразилась бурными аплодисментами, не было слышно радостных возгласов, и никто с энтузиазмом не похлопывал Хакена по спине. Раздались лишь вежливые хлопки. Для собравшихся в зале математиков-теоретиков так долго ожидаемая развязка одной из самых интересных историй в математике оказалась в высшей степени разочаровывающей.

Причина такого холодного приема заключалась в том, что после того как Аппель и Хакен подготовили конфигурации графов, что заняло семьсот страниц рукописного текста, они загрузили их в компьютер и запрограммировали его на проверку многих тысяч частных случаев. Работу компьютера даже нельзя было проверить вручную. Вычисления заняли шесть месяцев, свыше тысячи часов машинного времени, и результатом стала гора распечаток высотой 1,2 м. Хотя люди в основном верят, что доказательство правильно, большинство чистых математиков находят его неэлегантным, неудовлетворительным и неспортивным. Все равно, как если бы Эвел Нивель похвастался, что пересечет Большой Каньон на мотоцикле, а потом построил мост и переехал по нему. Быть может, такие чувства испытывают настоящие альпинисты при виде людей, использующих бутылочки с кислородом во время высокогорного восхождения.

Рис. 14.12. Кеннет Аппель и Вольфганг Хакен


Ученые и инженеры используют компьютеры для решения бесчисленных задач, но математики так не поступают. Компьютеры хороши для быстрых вычислений, но не для точных и тонких рассуждений, необходимых в математических доказательствах. Подобно литературе, философии и изобразительному искусству, математика всегда была устремлением человеческого духа, не поддающимся автоматизации. Быть может, настанет день, когда кто-нибудь создаст черный ящик для доказывания теорем. Мы вводим утверждение, а черный ящик отвечает «истина» или «ложь». (Такие попытки уже предпринимаются.) Кто-то скажет, что это лишило бы математику ее очарования и сделало бы менее красивой.

Доказательство теоремы о четырех красках стало первым широко обсуждаемым доказательством, полученным с помощью компьютера. И вряд ли последним. Еще один дискуссионный пример — доказательство гипотезы Кеплера, полученное в 1998 году Томасом К. Хейлсом122. Хейлс доказал, что Кеплер был прав, утверждая, что самый эффективный способ упаковки шаров в ящик — гранецентрированная кубическая упаковка: как бакалейщики укладывают апельсины, а артиллеристы ядра. Хотя этот результат был опубликован в престижном журнале Annals of Mathematics, редакция тянула с публикацией несколько лет (статья вышла в 2005 году), и даже тогда редакторы оговорились, что не стали и не смогли бы проверить тысячи строк компьютерного кода.

Перейти на страницу:

Похожие книги