Читаем Жемчужина Эйлера полностью

Иоганн Гессель сначала получил медицинское образование, но изменил род занятий, после того как известный минералог К. К. фон Леонард убедил его заняться минералогией. В итоге Гессель стал профессором минералогии и технологий горных работ в немецком Марбурге. Он внес вклад в разные области науки, но больше всего известен математическими исследованиями классов симметрии минералов.

В статье 1832 года Гессель описал пять исключений из формулы для многогранников129. Работая над статьей и предлагая ее для публикации, Гессель не знал о работе Люилье, написанной двадцатью годами раньше. Но вскоре он узнал об этой работе и о том, что три из пяти его исключений уже были описаны Люилье. Гессель полагал, что многим неизвестно об этих важных исключениях, поэтому не стал отзывать статью. Два новых исключения Гесселя показаны на рис. 15.3. Одно из них — многогранник, образованный двумя многогранниками, соединенными по ребру, а другое — многогранник, образованный двумя многогранниками, соединенными в вершине. Вопрос о том, следует ли называть эти фигуры многогранниками, спорный, но нет сомнений, что они не удовлетворяют формуле Эйлера. Первый имеет 12 вершин, 20 ребер и 11 граней (12 — 20 + 11 = 3), а второй — 8 вершин, 14 ребер и 9 граней (8 — 14 + 9 = 3).

Рис. 15.3. Исключения Гесселя из формулы для многогранников


Луи Пуансо нашел еще два исключения в 1810 году130. В статье, содержащей уточнение доказательства Лежандра, Пуансо также представил четыре звездных многогранника, показанных на рис. 15.4. Как мы видели, математические теоремы часто открываются, потом забываются и открываются заново. Напомним, что два из этих четырех звездных многогранников, большой и малый звездные додекаэдры, были описаны еще Кеплером (см. рис. 6.6), а до того встречались на картинах Ямницера и Уччелло (рис. 6.3). Пуансо первым представил два других звездных многогранника, большой додекаэдр и большой икосаэдр, в математическом контексте, хотя первый также встречается на рисунках Ямницера (рис. 6.3). Эти четыре многогранника теперь называются многогранниками Кеплера-Пуансо.

Проще всего рассматривать их как невыпуклые многогранники, составленные из треугольных граней. Мы уже отмечали, что они звездные и потому, как следует из доказательства Лежандра, удовлетворяют формуле

Эйлера для многогранников. Однако ни Кеплер, ни Пуансо не воспринимали их таким образом. Они считали эти экзотические тела новыми видами правильных многогранников.

Рис. 15.4. Многогранники Кеплера-Пуансо: большой и малый звездные додекаэдры, большой додекаэдр и большой икосаэдр


Чтобы понять их точку зрения, нам придется вернуться к многоугольникам на плоскости. Ранее мы утверждали, что существует только один правильный n-угольник для любого n > 2. Например, правильный пятиугольник показан на рис. 15.5 слева. Но если ослабить требования и допустить пересечение сторон многоугольника, то можно будет найти еще один правильный пятиугольник — пентаграмму пифагорейцев. В конце концов, для вычерчивания пентаграммы нужно провести только пять линий карандашом. Мы считаем, что пентаграмма имеет пять вершин и пять сторон, соединяющих эти вершины. Каждая сторона пересекает две другие, но эти точки пересечения игнорируются и не считаются вершинами. Пентаграмма образована пятью сторонами равной длины, и углы между ними равны. Чем не правильный пятиугольник?

Рис. 15.5. Правильный пятиугольник и правильный самопересекающийся пятиугольник, пентаграмма


Кеплер и Пуансо рассматривали свои звездные многогранники точно так же. Большой додекаэдр, с их точки зрения, образован не треугольниками, а двенадцатью самопересекающимися пятиугольными гранями (см. рис. 15.6). То есть нужно взять все компланарные грани и объединить их в одну грань. Таким образом, большой додекаэдр построен из конгруэнтных правильных пятиугольников, и в каждой вершине сходится одинаковое число граней. Если мы готовы отказаться от требования выпуклости, то большой додекаэдр можно рассматривать как правильный многогранник наравне с платоновыми телами. И три других тела Кеплера-Пуансо обладают этой переопределенной характеристикой правильности — у большого и малого звездных додекаэдров гранями являются пентаграммы, а у большого икосаэдра — равносторонние треугольники.

Рис. 15.6. Правильные многогранники с самопересекающимися гранями


Как Теэтет доказал, что существует всего пять правильных многогранников, так Коши в 1811 году доказал, что существует только четыре многогранника, удовлетворяющих этому новому, ослабленному определению правильности, — четыре многогранника Кеплера-Пуансо131.

Перейти на страницу:

Похожие книги