Эти дискуссии знаменуют переход от геометрии к топологии. В популярной литературе часто встречается выражение «геометрия на резиновом листе», когда нужно рассказать, что такое топология, людям, незнакомым с этим термином. Хотя математики-буквалисты будут возмущены таким чрезмерным упрощенчеством, это все же разумный способ описать различие между топологией и геометрий. В геометрии важно, что объекты изучения жесткие. Измерение длин и углов, доказательство конгруэнтности, вычисление площадей и объемов — все это требует точной и неподвижной геометрической структуры.
Выше мы видели, что в некоторых случаях жесткость и неизгибаемость геометрических фигур не нужны и, более того, только затемняют математическую сторону предмета. Изучая кёнигсбергские мосты, Эйлер обнаружил, что важна общая конфигурация, а не точные местоположения. Это наблюдение привело к созданию теории графов, одному из первых воплощений топологии. Далее мы видели, что знакопеременная сумма V — E + F зависит только от общей формы — топологии — объекта, а не от числа граней или их конфигурации. Мы заметили, что для любого сферического многогранника имеет место равенство V — E + F = 2, для многогранника с g «туннелями» — равенство V — E + F = 2 — 2g, а для любого связного планарного графа — равенство V — E + F = 1.
Поэтому нетрудно представить, что формула Эйлера может быть применима и к другим объектам, отличным от многогранников. Начнем с резинового многогранника, удовлетворяющего формуле V — E + F = 2. Можно ли изменить его форму, так чтобы было V — E + F ≠ 2? Это нелегко. Если мы просто надуем его, как воздушный шарик, так что все грани и ребра перестанут быть прямыми, то знакопеременная сумма не изменится. Если мы сожмем его, перекрутим или вытянем, то соотношение между числом вершин, ребер и граней останется неизменным. И лишь если мы ножом прорежем воздушный шарик, то знакопеременная сумма изменится (появится по крайней мере одно новое ребро). В следующей главе мы более подробно обсудим, что значит, что две формы топологически «одинаковы», и выясним, как формула Эйлера применяется к различным топологическим формам.
Математический термин «топология» относится к 1847 году (до того он применялся только в ботанике). Впервые он появился на немецком в заголовке книги Листинга «Vorstudien zur Topologie»136
, хотя и до того уже десять лет использовался в переписке. На английском его впервые употребил Питер Гатри Тэйт (1831–1901) в надгробном слове Листингу в 1883 году. Он писал: «ТерминВосхождение Лефшеца на вершину славы любопытно. Он родился в России в 1884 году в семье евреев, бывших подданными Османской империи, рос и учился во Франции, эмигрировал в Америку и стал работать инженером в Филадельфии. В двадцать шесть лет в результате тяжелой производственной травмы он потерял обе руки и решил строить карьеру в математике. За один год он написал докторскую диссертацию в университете Кларка и некоторое время преподавал в Небраске, а затем получил место в Канзасском университете в Лоуренсе. Затем, в возрасте сорока лет, после десяти лет важной работы, его приняли на работу в Принстонский университет. За свою долгую выдающуюся карьеру он получил многочисленные награды, включая Национальную научную медаль США.
Согласно Альберту Такеру (1905–1995), одному из учеников Лефшеца, именно Лефшец популяризировал употребление термина «топология». Свою оказавшую сильное влияние книгу, написанную по просьбе Американского математического общества, он назвал «Топология». Вот что пишет Такер: