Начало математической карьеры Люилье прошло в Варшаве, где он был наставником сына князя Адама Чарторыйского. Затем он вернулся в Швейцарию, где занял должность в Женевской академии и в конечном итоге дорос до ректора. За свою долгую жизнь он внес вклад в геометрию, алгебру и теорию вероятностей и за свои работы получил международное признание. Он также написал популярные учебники, которые много лет использовались в Польше. О его личности один биограф писал: «если поляки находили Люилье откровенным пуританином, то сограждане в Женеве укоряли его за недостаточный аскетизм и причуды, хотя последнее качество никогда не шло дальше изложения геометрических теорем в стихах и сочинения баллад о числе три и о квадратном корне из минус единицы»126
.В 1813 году Люилье внес важный вклад в теорию многогранников и в понимание формулы Эйлера. В своей работе он представил три класса многогранников, не удовлетворяющих этой формуле, и назвал их «исключениями».
Статья Люилье была опубликована в новом частном журнале «Annales de mathematiques pures et appliquees». Этот журнал, первый посвященный исключительно математике, основал и редактировал артиллерийский офицер и опытный геометр Жозеф Диас Жергонн (1771–1859). Как писал математик Жан-Клод Понт, Жергонн «имел отвратительную привычку публиковать только те части предложенных ему работ, которые его интересовали»127
. Мало того что Жергонн подверг работу Люилье существенному редактированию, так он еще неоднократно вставлял собственные комментарии в текст его статьи — даже утверждал, что знал о двух из трех исключений, до того как прочел статью Люилье!Первый класс исключений, открытых Люилье, состоял из многогранников с кольцевыми гранями. Например, на рис. 15.1 углубление в середине одной грани куба порождает грань в форме квадратной втулки. У этого многогранника 10 граней (5 квадратных, 4 треугольных и одна кольцевая), 20 ребер и 13 вершин. В данном случае формула Эйлера не выполняется, потому что 13–20 + 10 = 3. Люилье не называл такие грани кольцевыми, а говорил, что грань содержит «внутренний многоугольник».
Рис. 15.1. Исключения Люилье: кольцевые грани, туннели и полости
Второй класс исключений Люилье — многогранники с одним или несколькими «туннелями», просверленными сквозь центр. На рис. 15.1 мы видим многогранник в виде бублика. В нем 16 вершин, 32 ребра и 16 граней, т. е. 16–32 + 16 = 0. Идею третьего класса исключений Люилье навеяла коллекция минералов, которую он видел у своего знакомого. В одном из образцов Люилье заметил цветной кристалл внутри прозрачного. (Позднее, в 1832 году Гесселя также вдохновил такой кристалл; в его случае то был кубический кристалл галенита (сульфида свинца) с кристаллом хлористого кальция внутри.) Люилье представил себе многогранник с многогранной же внутренней полостью. Разумеется, такое исключение имеет смысл, только если считать многогранник сплошным, а не полым телом. Куб с кубической полостью показан на рис. 15.1. У этого многогранника 16 вершин, 24 ребра и 12 граней, так что 16–24 + 12 = 4.
Люилье (и Жергонн) полагал, что этим исчерпываются все возможные исключения из формулы Эйлера. Люилье писал: «Легко убедиться, что теорема Эйлера верна в общем случае для всех многогранников, выпуклых и невыпуклых, за исключением случаев, которые будут описаны ниже»128
.Затем, вместо того чтобы игнорировать исключения, Люилье придумал модификацию формулы Эйлера, учитывающую особенности исключительных многогранников. Он утверждал, что многогранник с T туннелями, C полостями и P внутренними многогранниками удовлетворяет формуле
V — E + F = 2 — 2T + P + 2C.
Нетрудно проверить, что эта формула действительно верна для всех трех многогранников на рис. 15.1.
Но, как оказалось, три случая, найденных Люилье, не исчерпывают всех исключений из формулы Эйлера, и его изобретательная формула неприменима ко всем «экзотическим» многогранникам. Например, ни один из четырех многогранников на рис. 15.2 не попадает ни в одну из категорий Люилье и не понятно, как применить его формулу. У первого многогранника имеется грань с двумя внутренними многоугольниками с общей вершиной; во втором имеется туннель с разветвлением; в третьем — полость в форме тора, а четвертый сам имеет форму тора, но наличие туннеля не очевидно.
Рис. 15.2. Многогранники сложной формы
И мы снова возвращаемся к проблеме определения многогранника — невозможно классифицировать эйлеровы многогранники, не имея точного определения, что такое многогранник. Тем не менее классификация исключений Люилье принесла чрезвычайную пользу, а его формула в несколько модифицированном виде в конечном итоге оказалась правильной. На самом деле, согласно Лакатосу, этот модифицированный вариант формулы Эйлера или похожий на него переоткрывался десяток раз за восемьдесят лет, последовавших за открытием Люилье.