В истории изучения кристаллов в начале нашего века был период, когда среди прочих проблема «электроны в металле» была весьма загадочной, интригующей, казалось — тупиковой. Посудите сами. Экспериментаторы, изучающие электрические свойства металлов, доказывают, что в металле имеются свободно движущиеся электроны. Вот два очень существенных факта, которые они установили. Первый факт: если быстро движущийся проводник, подключенный к амперметру, мгновенно остановить, по проводнику потечет ток и амперметр это обнаружит. Ясно, в чем дело: и остановленном проводнике электроны продолжают поступательно двигаться подобно тому, как движутся пассажиры, стоя едущие в трамвайном вагоне, который мгновенно затормозили. Движущиеся электроны и обусловят обнаруживаемый ток. Основываясь на описанной модели механизма возбуждения тока в заторможенном проводнике, можно вычислить величину тока. Вычислили! Результат расчета совпал с экспериментом! Убедились в том, что для носителей заряда характерно отношение величины заряда
Другие экспериментаторы, изучающие теплоемкость металлов, с другими фактами, утверждают, что в металлах вообще никаких свободных электронов нет. Они измерили теплоемкость металлического образца и в согласии с законом Дюлонга и Пти получили цифру, близкую к 6 кал/(моль•К). Но ведь это теплоемкость только решетки. А где же вклад свободных электронов? Ведь если бы они существовали и в совокупности образовывали «газ свободных электронов», то каждый из них имел бы кинетическую энергию 3
/2Ситуация по меньшей мере удивительная: амперметр чувствует электроны, а калориметр — нет! И тот, и другой прибор имеют большие заслуги перед естествознанием и безусловно достойны и уважения, и доверия! Доверять надо и тому, который говорит «да», и тому, который говорит «нет». Явно дело не в приборах, в умелых руках приборы говорят правду! Дело, видимо, в том, что, вслед за корифеями физики начала века, произнеся слова «свободные электроны», мы усмотрели лишь половину правды об электронах в металле. Нас, интересующихся непременными признаками жизни кристалла, не может не интересовать, почему старые добрые представления о тепловом движении частиц, когда их энергия пропорциональна температуре, применительно к электронам оказываются явно недостаточными. Электроны «живут» по каким-то иным законам, обнаруживая при этом не обычные признаки жизни, во всяком случае не свойственные ионам.
Первая половина правды об электронах состоит в том, что они свободны, что под влиянием приложенной к ним силы они могут направленно перемещаться и быть при этом носителями тока.
Поищем теперь вторую половину правды об электронах. В ее поисках нам могут помочь законы квантовой механики. Среди ее фундаментальных законов есть закон (или принцип), впервые сформулированный великим швейцарским физиком Вольфгангом Паули. Согласно Паули, в состоянии с одной и той же энергией могут находиться не более двух электронов. Вывести закон Паули сегодня нельзя ниоткуда, можно, однако, убедиться в том, что, если бы природа перестала ему подчиняться, для природы это окончилось бы плачевно, гибельно. Все электроны в атоме стремились бы запять положения с минимальной энергией и дружно сгруппироваться у самого ядра атома, и нынешний атом — основа мироздания — перестал бы существовать. Остальное читатель пусть домыслит сам! Как уже упоминалось, природа мудра и великие законы соблюдает, видимо, догадываясь о последствиях нарушения этих законов.