Читаем Жизнь Георга Кантора полностью

Кантор завершил свои математические публикации вышедшей в 1895-97 годах статьей [17] из двух частей. Она представляет систематическое изложение большей части его результатов по общей теории множеств и написана совсем в ином - можно сказать, классически зрелом - духе, чем его прежние работы. Мы находим здесь предназначенную для математической публики, освобожденную от критических и философских прибавлений версии работы «К учению о трансфинитном»; при этом весьма подробно излагается еще не-достававшая там теория вполне упорядоченных множеств и порядковых чисел, но первоначально задуманное применение ее к теории кардинальных чисел опущено, по-видимому, из-за отсутствия теоремы о полном упорядочении. Из «классических» теорем абстрактной теории множеств мы не обнаруживаем в [17] лишь теоремы эквивалентности, первые доказательства которой появились в то же время.

При сравнении работы [17] , одной из двух величайших и бессмертных работ Кантора, со второй из них, [13], прежде всего видно смещение центра тяжести от множеств к числам; далее значительный прогресс в смысле ясности и систематичности делает эту статью еще и сейчас ценной для преподавания.

В таком развитии чувствуется влияние Дедекинда, невольное и, возможно, не осознанное обоими. Но и в этой поздней работе заметно сохраняется дистанция, отделяющая ее от построений Дедекинда и Фреге, как в отношении самого понятия множества, так и в способе последовательного восхождения, отправляющегося от конечных множеств, и в (неоправданном по существу) ограничении вторым числовым классом.

В особенности следует отметить начало статьи [17]. Здесь приводится известное определение множества, заметно отличающееся от предыдущих (ср. также часть 1 работы «К учению о трансфинитном»), а затем вводится понятие мощности в смысле только что указанной работы - как общего понятия, возникающего из множества при двойной абстракции, от природы элементов и от порядка их задания; таким образом, понятие мощности уже не определяется через эквивалентность, как в [13]. За надлежащим образом видоизмененными определениями упорядочения по величине и мощностей следует отчетливое замечание, что «сравнимость» не самоочевидна и не может быть доказана в этом месте построения; автор обещает доказать теорему о сравнимости в дальнейшем и указывает, что «теорема эквивалентности» будет вытекать из нее как следствие.

<p>4. Старость и признание</p>

В 1897 году завершается публикация работ 52-летнего в то время исследователя. Тогда же начинается все возрастающее признание его труда математическим миром.

Прекращение научной продукции вовсе не означает, что он перестал интенсивно заниматься теорией множеств. Применениям в теории функций действительного переменного он уделял мало внимания, более ожидая вторжения методов теории множеств в классический анализ и в теорию чисел. В центре же его интересов по-прежнему находилась проблема континуума. Об его усилиях в этом направлении, кроме волнующего эпизода в 1904 г., говорит также переписка с Дедекиндон летом 1899 г. Эти последние дошедшие до нас обрывки переписки, отделенные от предыдущих почти двадцатилетним промежутком, начинаются с утверждения Кантора, что с 1897 г. он располагает доказательством теоремы, в силу которой все мощности суть алефы. Дело заключалось в следующем.

Перейти на страницу:

Похожие книги

Большая медицинская энциклопедия диагностики. 4000 симптомов и синдромов
Большая медицинская энциклопедия диагностики. 4000 симптомов и синдромов

Большая компьютерная энциклопедия является удобным и грамотным справочником по использованию современных компьютерных программ и языков. В книгу включено более 2600 английских и русских терминов и понятий. Справочник операционных систем и программирования познакомит вас с пятью самыми популярными компьютерными языками и тринадцатью операционными системами. Справочник по «горячим клавишам» содержит все самые последние обновленные данные для семи популярных программ, а справочник компьютерного сленга состоит почти из 700 терминов, которые помогут вам ориентироваться в компьютерном мире. Эта книга станет для вас незаменимым помощником и поможет получить новые знания.

Аурика Луковкина

Здоровье / Медицина / Прочая научная литература / Здоровье и красота / Дом и досуг / Образование и наука