Из написанных им в 80-ые годы работ [3] (часть 5) и “Über die verschiedenen Standpunkte in Besug auf das aktuelle Unendliede”, “Mitteilungen zur Lehre vom Transfiniten” видно поразительное знакомство Кантора с философской литературой, и притом не только с обширными частями современных и несколько более старых сочинений, но и с классиками философии предыдущих столетий, и в особенности с важнейшими философско-тео-логическими авторами схоластики и с Аристотелем. Мы находим у него глубокое изучение философии, почти всегда восходящее к источникам, но привлекающее также обширную историко-философскую литературу; круг его интересов распространяется на представителей древнегреческой атомистики и их противников, Платона и Аристотеля, Августина и других отцов церкви, Боэция, Фому Аквинского и многих других схоластов, Николая Кузанского и Джордано Бруно, Декарта, Спинозу, Локка, Лейбница, Канта и Фриса; даже за полстолетия до нас это было редким исключением для исследователя, специальностью которого не является философия. Сверх того, Кантор находился в тесных научных, а также в личных дружеских отношениях с его младшими коллегами Эдмундом Гуссерлем и Германом Шварцем, защищавших в Галле диссертации по философий. Напротив, к устремлениям «математической логики» (Шредер, Фреге и т.д.) он относился отрицательно. По проницательному замечанию Феликса Клейна[37], нельзя считать случайностью, что Кантор прошел также схоластическую школу; более, чем в других математических дисциплинах, где на передний план выступают систематически-конструктивное, а часто специфически-вычислительное, способы рассуждений в теории множеств (по крайней мере, в абстрактной) своей общностью, но в то же время своей тонкостью и аналитической расчлененностью напоминают рассуждения схоластической логики и теологии; математическое учение об актуальной бесконечности во многом родственно им также своей смелостью, с другой же стороны, схоластика, подобно математике, ставит перед собой идеал строгости умозаключений. Вообще же для Кантора философия была отнюдь не посторонней областью, в которую приходилось входить ради математических целей; для него обе области были глубоко связаны. У своих читателей он предполагал не только математические, но и философские познания; насколько он считал это существенным, видно из предисловия к отдельному изданию части 5 работы [13], где он объясняет, что писал одновременно для двух кругов читателей: и «для философов, проследивших развитие математики до новейшего времени, и для математиков, знакомых с важнейшими явлениями старой и новой философии».
Из отдельных мест, имеющих философское значение, упомянем замечание в работе [13], ч. 5, о формировании
Для
Для Кантора оба вида реальности совпадают, вследствие единства содержащего нас самих всеобщего, и он полагает, что каждому понятию, реальному в первом смысле, присуща также и трансиентная реальность, установление которой составляет часто труднейшую задачу метафизики. Характерное же преимущество математики он усматривает в том, что она «при разработке своего идейного материала должна принимать во внимание