Изложив принципы, на основании которых можно понять, каким образом, с одной стороны, сохраняется движение, с другой,— оно возникает или изменяется под влиянием сил, я перехожу к определению и исследованию самого движения тел, как-либо приведенных в движение яри помощи сил. И прежде всего, конечно, я рассматриваю прямолинейное движение как самое легкое для определения; оно возникает, если под действием одной только силы свободная точка либо бывшая в состоянии покоя приводится в движение, либо находящаяся уже в движении, ускоряется или замедляется в направлении действующей силы. Этому исследованию я посвятил третью и четвертую главы. В первой из них я исследую прямолинейное движение в пустом пространстве, во второй—то же прямолинейное движение в так или иначе сопротивляющейся среде. Хотя сопротивление можно свести к собственно так называемым силам, в этом сочинении мне показалось полезным изложить учение об изменении движения отдельно от сопротивления как по примеру других, которые писали по этому вопросу, так и вследствие существенной разницы, которая существует между абсолютными силами и сопротивлением. Ведь абсолютная или собственно так называемая сила имеет определенное, от движения тела не зависящее направление и сверх того одинаково воздействует как на тело, находящееся в движении, так и на тело, находящееся в покое; наоборот, направление сопротивления всегда совпадает с направлением самого движущегося тела и его величина зависит от скорости тела. Хотя в природе не встречается другого сопротивления, кроме того, которое пропорционально квадрату скорости, но я рассмотрел еще некоторые другие виды сопротивлений как для того, чтобы дать решение большего количества задач, касающихся движения в сопротивляющейся среде, так и, главным образом, для того, чтобы иметь случай предложить много прекрасных примеров вычисления.
Наконец, в двух последних главах я рассмотрел криволинейные движения тел, которые возникают, когда направление движущих сил не совпадает с направлением брошенного тела. В этом случае тело постоянно отвлекается от прямого пути и принуждено двигаться по кривой. В пятой главе я изложил подобного рода криволинейное движение в пустоте, в шестой я рассмотрел его же в сопротивляющейся среде. Главные задачи, которые даны в этих главах, заключаются в том, чтобы определить кривую, по которой может двигаться любое брошенное тело, подверженное действию каких угодно сил, и вместе с тем дать скорость тела в отдельных точках этой кривой,— причем как в пустоте, так и в сопротивляющейся среде. Из этих основных предложений возникли тогда и другие, где или по данной кривой, описанной телом, или по тому или иному данному виду движения требуется найти как движущие силы, так и сопротивление. И в этом случае я прежде всего стремился к тому, чтобы охватить все относящиеся сюда задачи, разобранные Ньютоном и другими авторами, и дать настоящие решения на основе аналитического метода. На этом заканчивается первый том, который, равно как и второй, я составил так, чтобы человек, имеющий достаточный опыт в анализе конечных и бесконечных, мог с поразительной легкостью все это понять и все это произведение прочесть без чьей бы то ни было помощи.
Нередко мне приходилось замечать, что большая часть трудностей, на которые наталкиваются в анализе бесконечно малых изучающие математику, возникает от того, что, едва усвоив элементарную алгебру, они направляют свои мысли к этому высокому искусству; вследствие чего они не только как бы остаются стоять на пороге, но и составляют себе превратные представления о той бесконечно малой величине, идея которой призывается на помощь. Хотя анализ бесконечно малых не требует совершенного знания элементарной алгебры и всех сюда относящихся искусств, однако есть много вопросов, разрешение которых важно для подготовки начинающих к более высокой науке и которые, однако, в элементарной алгебре либо пропускаются, либо рассматриваются не достаточно обстоятельно. Поэтому я не сомневаюсь, что содержание этих книг сможет восполнить с избытком указанный пробел. Я приложил старание не только к тому, чтобы пространнее и отчетливее, чем обычно, изложить все, чего безусловно требует анализ бесконечно малых; я рассмотрел также довольно много вопросов, благодаря которым читатели незаметно и как бы сверх ожидания могут освоиться с идеей бесконечного. Много вопросов, разрабатываемых обычно в анализе бесконечно малых, я здесь разрешил при помощи правил элементарной алгебры, чтобы тем лучше выявилась сущность того и другого метода.