Это исследование принесло весьма большую помощь при разложении дробных функций на вещественные множители; этот вопрос я рассмотрел подробнее, так как такое разложение совершенно необходимо в интегральном исчислении. Далее я подверг изучению бесконечные ряды, которые возникают из разложения функций этого рода и носят название рекуррентных. Здесь я вывел как их суммы, так и общие члены, а также другие замечательные их свойства; так как к этому привело разложение на множители, то я разобрал и обратную проблему, каким образом произведения многих, даже бесконечного числа, множителей путем перемножения развертываются в ряды. Это не только открывает путь к изучению бесчисленного количества рядов; так как этим способом можно разлагать ряды в произведения из бесконечного числа сомножителей, то я нашел довольно удобные числовые выражения для нахождения логарифмов синусов, косинусов и тангенсов. Кроме того, я вывел из того же источника решение многих вопросов, которые могут возникнуть при разбиении чисел на слагаемые; вопросы подобного рода без помощи этих приемов, по-видимому, превышают силы анализа.
Такое разнообразие материала легко могло разрастись на много томов; но я дал все, по мере возможности, настолько сжато, что всюду излагается— весьма, впрочем, ясно — лишь основное; более же подробная разработка предоставляется трудолюбию читателей, дабы они имели на чем упражнять свои силы, чтобы еще шире раздвинуть границы анализа. Не боюсь открыто заявить, что в этой книге не только содержится много совершенно нового, но также указаны источники, откуда можно черпать многие значительные открытия.
Точно так же я поступил и во второй книге, где исследовал вопросы, обычно относимые к высшей геометрии. Однако прежде чем приступить к коническим сечениям, к которым в других курсах обычно сводится вся эта часть, я изложил теорию кривых линий вообще, которая затем могла бы быть с пользой применена для изучения природы каких бы то ни было кривых линий. При этом я не пользуюсь никакими другими вспомогательными средствами, кроме уравнения, выражающего природу каждой кривой линии, и показываю, как из этого уравнения можно вывести как вид кривой, так и ее основные свойства. Это особенно важно, как мне кажется, в применении к коническим сечениям, которые до сих пор изучались либо только при помощи геометрии, либо хотя и при помощи анализа, но весьма несовершенным и неестественным путем. Сперва я изложил общие свойства линий второго порядка, исходя из общего уравнения для этих линий; затем подразделил их на роды или виды, руководствуясь тем, имеют ли они ветви, уходящие в бесконечность, или же кривая заключена в конечном промежутке. В первом случае пришлось, сверх того, принять во внимание, сколько ветвей уходит в бесконечность и какова природа каждой из них, а также имеют ли они асимптотические прямые или нет. Так я получил три обычных вида конических сечений, из коих первый — эллипс, целиком заключенный в конечном промежутке, второй — гипербола, имеющая четыре бесконечные ветви, стремящиеся к двум асимптотическим кривым; третьим же видом является парабола, имеющая две бесконечные ветви, у коих отсутствуют асимптоты.
Далее, я сходным образом подверг исследованию линии третьего порядка, которые, изложив их общие свойства, я разделил на 16 родов, отнеся к этим родам все 72 вида, найденные Ньютоном. Самый же метод я настолько отчетливо описал, что деление по родам можно осуществить без труда для каждого из последующих порядков линий. Соответствующий опыт я и проделал применительно к линиям четвертого порядка.
Покончив с этими исследованиями, относящимися к порядку линий, я вернулся к описанию общих свойств всех линий. Я изложил метод определения касательных к кривым, их нормалей, а также и самой кривизны, выражаемой через радиус соприкасающегося круга. Все эти вопросы в настоящее время по большей части решаются с помощью дифференциального исчисления; однако я изложил их здесь только на основе общей алгебры, дабы сделать затем более легким переход от анализа конечных величин к анализу бесконечно малых. Я исследовал также точки перегиба кривых, угловые, двойные и кратные точки и изложил способ, при помощи которого все эти точки могут быть найдены из уравнений без всякого труда. Впрочем, я не отрицаю, что эти вопросы значительно легче разрешаются с помощью дифференциального исчисления. Я коснулся также спорного вопроса об угловой точке второго порядка в случае, когда обе дуги, сходящиеся в угловой точке, имеют кривизну, обращенную в одну и ту же сторону, и изложил этот вопрос так, что впредь он уже не может вызывать каких-либо сомнений.
Затем я прибавил несколько глав, в которых показываю, как найти кривые линии, обладающие заданными свойствами, и, наконец, дал решение ряда задач, касающихся отдельных рассечений круга.