В течение нескольких десятилетий после открытия Уотсона и Крика была выявлена физико-химическая природа мутаций. В результате воздействия тепла, облучения, солнца или естественного старения в химических основаниях ДНК могут возникать повреждения, которые способны привести к изменению буквы кода. При последующей репликации неправильная буква закрепляется в генетическом коде, что и приводит к мутации. В большинстве случаев мутация проходит незаметно, но иногда в результате появляется альтернативный признак, как, например, белые цветки примулы вместо желтых. Если такой признак несет в себе определенные преимущества, то благодаря естественному отбору носителей этого признака в следующих поколениях становится больше. Внутри изолированной популяции это приводит к появлению новых видов. Однако если новый вариант не способствует выживанию, то носителей этого гена постепенно становится меньше, и мутация окончательно исчезает из популяции. Учитывая природу генов и неотвратимость естественного отбора, эволюция становится неизбежной, как и падение яблока с дерева.
Как уже неоднократно демонстрировалось в других науках, генетический механизм следует рассматривать как модель. И как любая эффективная модель, он отличается простотой и высокой прогностической способностью. Молекулярная биология поставила эту простую модель гена на службу здоровью, создавая на ее основе многочисленные лекарственные препараты, новые методики лечения и продукты питания с учетом стремительного роста численности населения, а также вакцины, разрабатывающиеся в настоящее время для защиты планеты от COVID-19. Однако гены играют и другую, довольно парадоксальную роль в контексте моего утверждения о том, что жизнь устроена просто. На этот раз на первый план в нашем рассказе выходят довольно неприятные грызуны и пчелы.
Эусоциальные насекомые (например, пчелы и муравьи) отличаются сложной социальной иерархией, проявляющейся в распределении рабочих и репродуктивных функций (одна репродуктивная самка и стерильные рабочие особи), а также сложным устройством жилища и высокоорганизованными формами коммуникации, примером которой может служить «виляющий танец» в виде восьмерки, которую описывают пчелы-медоносы. Существование стерильных рабочих особей на первый взгляд противоречит принципу «клюв и клык всегда в крови»[400], когда естественный отбор, казалось бы, должен благоприятствовать особям, которые на первое место ставят собственные интересы. Что заставляет рабочих пчел и муравьев отказываться от важнейшей функции воспроизведения себе подобных во имя помощи ближнему? Этот вопрос составляет суть самого загадочного явления в биологии, имеющего непосредственное отношение к человеку, – альтруизма. Вопреки тому, что диктует закон выживания наиболее приспособленных, многие животные, например эусоциальные насекомые, предпочитают делиться добычей и вместе защищаться от опасности. Но почему?
На этот вопрос ответил английский биолог-эволюционист Уильям Дональд Гамильтон (1936–2000), предложив в качестве решения проблемы правило родственного отбора, получившее название правило Гамильтона. Для большей части эусоциальных насекомых характерна особая система наследования – гаплодиплоидия, в рамках которой самцы имеют одну копию генов, а самки две. Если применить к этой модели законы Менделя, то получается, что у этих насекомых сестры обладают 75 % общих генов, а не 50 %, что свойственно для человека и других животных, а также растений, включая горошек. Гамильтон провел расчеты и обнаружил, что самка имеет более высокие шансы передать свои гены, не воспроизводя собственное потомство, а помогая своей матери – пчелиной или муравьиной матке – производить как можно больше репродуктивных сестер. Эта теория помогла наконец понять, что скрывается за альтруизмом, – гены. Как рабочие особи, так и их царица на самом деле оказываются рабами своих генов.
Эта теория замечательна тем, что она показывает, как небольшая модификация простой менделевской модели механизма размножения и наследственности объясняет многообразие видов. Такая особенность свойственна любой простой системе. В то время как сложные системы с большим количеством внутриструктурных связей отличаются стойкостью к изменениям, любая модификация в простой модели, такой как наследственность, приводит к глобальным изменениям, затрагивающим всю систему целиком. Теория родственного отбора Гамильтона была опубликована в 1964 году, и, хотя поначалу она не получила отклика, в 1970-х годах на ее основе стала складываться социобиология, которая ознаменовала собой переворот в эволюционной биологии, случившийся под влиянием вышедшей в 1976 году книги британского биолога Ричарда Докинза «Эгоистичный ген»[401].