Читаем Журнал «Компьютерра» № 24 от 28 июня 2005 года полностью

Термин черная дыра был предложен Дж. Уилером в 1967 году, однако первые предсказания существования тел столь массивных, что даже свет не может их покинуть, принадлежат Дж. Митчеллу и П.-С. Лапласу (XVIII век). Их расчеты основывались на теории тяготения Ньютона и корпускулярной природе света и скорее всего были следующими [Автор никоим образом не претендует на историческую достоверность]: рассмотрим частицу света (фотон), испущенную с поверхности звезды радиуса R_s и массы M в направлении удаленных звезд. Каковы должны быть Rs и M, чтобы фотон в конце концов вернулся обратно? В момент «запуска» фотона его кинетическая энергия K1 предполагается равной mc^2/2, где m – масса покоя фотона (в действительности она равна нулю, но в то время об этом не знали, а просто предполагали ее очень малой), а c – скорость света. Потенциальная энергия, по Ньютону, U_1 = –GmM/R_s, где G – гравитационная постоянная. Момент №2, когда фотон улетел так далеко, что его взаимодействием со звездой можно пренебречь (U_2 = 0), выберем таким, чтобы он совпадал с точкой остановки (K_2 = 0). В реальной ситуации последнее условие гарантирует возвращение фотона (U_2 ≈ 0). Из закона сохранения энергии, K_1 + U_1 = K_2 + U_2, мы получаем (заметьте, что m сокращается):

R_s = 2GM/c^2. (1)

Величина R_s называется радиусом Шварцшильда, или радиусом сферической черной дыры. Однако самое интересное в нашем выводе R_s – что он неверен! Известно, что теория тяготения Ньютона (см. U_1) и классическая механика (которая дает K_1) верны, только когда скорости тел малы по сравнению со скоростью света, а их энергии-массы почти не искривляют пространство-время (П-В). Более того, в рамках теории Ньютона звезда с радиусом (1) будет «черной» только для бесконечно удаленного наблюдателя. В общем, теория заведомо неприменима к реальным черным дырам. И все же формула (1) сама по себе верна [Видимо, при выводе (1) скрытые ошибки, как шутят физики, «проаннигилировали» друг с другом], что было подтверждено К. Шварцшильдом (1916) в рамках общей теории относительности (ОТО) А. Эйнштейна (1915)! [Не путать со специальной ТО (1905), которая не учитывает гравитацию и искривление П-В и является частным случаем ОТО] В этой теории (1) определяет, до какого размера должно сжаться тело, чтобы получилась черная дыра. Если для тела радиуса R и массы M выполняется неравенство R/M > 2G/c^2, то тело гравитационно устойчиво, в противном случае оно коллапсирует в черную дыру.

Черные дыры от Эйнштейна до Хокинга

По-настоящему последовательная и непротиворечивая теория черных дыр невозможна без учета искривляемости пространства-времени. Поэтому неудивительно, что черные дыры естественным образом появляются как частные решения уравнений ОТО. Согласно им, черная дыра – это объект, искривляющий пространство-время в своей окрестности настолько, что никакой сигнал не может быть передан с поверхности или изнутри черной дыры, даже по световому лучу. Иными словами, поверхность черной дыры – это граница пространства-времени, доступного нашим наблюдениям. Вплоть до начала 70-ых к этому утверждению невозможно было добавить что-либо существенное: черные дыры были «вещами в себе» – загадочными объектами Вселенной, чья внутренняя структура непостижима в принципе.

Энтропия черных дыр. Однако в 1972 году Я. Бекенштейн выдвинул гипотезу [J.D. Bekenstein, Black holes and the second law//Lett. Nuovo Cim. 4, 737 (1972); Phys. Rev. D 7, 2333 (1973); Phys. Rev. D 9, 3292 (1974)], согласно которой черная дыра обладает энтропией, пропорциональной площади ее поверхности A (для сферической черной дыры Шварцшильда A = 4πR_s^2):

S_{ЧД} = C A/4, (2)

где C = kc^3/Gђ – комбинация фундаментальных констант (k – постоянная Больцмана, ђ – постоянная Планка). Теоретики предпочитают работать в планковской системе единиц, в этом случае C = 1. Более того, Бекенштейн предположил, что для суммы энтропий черной дыры и обычной материи, S_{tot} = S_{вещество} + S_{ЧД}, имеет место термодинамический обобщенный второй закон:

ΔS_{tot} ≡ (S_{tot})_{конечн} – (S_{tot})_{начальн} ≥ 0, (3)

то есть суммарная энтропия системы не может уменьшаться. Последняя формула полезна также тем, что из нее можно вывести ограничение на энтропию обычной материи.

Рассмотрим так называемый процесс Сасскинда [L. Susskind, The world as a hologram//J. Math. Phys. 36, 6377 (1995)]: имеется сферически-симметричное тело «субкритической» массы, то есть такой, что еще удовлетворяет условию гравитационной устойчивости (см. выше), однако достаточно добавить немного энергии-массы DE, чтобы тело сколлапсировало в черную дыру. Тело окружено сферической оболочкой (чья суммарная энергия как раз равна DE), которая падает на тело. Энтропия системы до падения: (S_{tot})_{начальн} = S_{вещество} + S_{оболочка}, после: (S_{tot})_{конечн}= S_{ЧД} = A/4. Из (3) и неотрицательности энтропии получаем знаменитое ограничение сверху на энтропию вещества:

S_{вещество} ≤ A/4. (4)

Перейти на страницу:

Похожие книги