Наилучшим свидетельством будущего электронных приборов и, в частности, трехэлектродной электронной лампы, по-видимому, является их прошлое. Построенные впервые для детектирования радиотелеграфных сигналов, к 1914 г. эти лампы были усовершенствованы настолько, что их стали постоянно использовать в качестве усилителей или повторителей на трансконтинентальных линиях телефонной связи по проводам. В 1915 г. они применялись как на передающих, так и на приемных станциях первой трансатлантической линии радиотелефонной связи, а в 1924 г. — для быстродействующего телеграфирования по кабелю, проложенному по дну океана. В течение того же периода двух— и трехэлектродные лампы нашли широкое применение в радиовещании и многих других областях, где можно было использовать ценные выпрямляющие и усилительные свойства электронных приборов.
Сегодня многие тысячи электронных ламп всех размеров и конструкций используются в сетях связи, построенных фирмой Bell Systems; множество ламп работает в других аналогичных системах по всему миру. В течение последних пятнадцати лет ученые и инженеры проделали большую работу, позволившую наладить производство прочных, относительно эффективных приборов, которые в ряде случаев способны перерабатывать мощности, измеряемые многими киловаттами. И конца успехам в исследованиях и разработках не предвидится.
Четырехслойный диод — запоминающий элемент
На рис. 1 показана схема аварийной сигнализации, которая обеспечивает зажигание сигнальной лампы в случае возникновения кратковременных или устойчивых аварийных условий. Эта схема исключает проблемы, связанные с дребезгом контактов, и дает возможность маломощным схемам включать сильноточные лампы.
В предаварийных условиях конденсатор С1 заряжается до напряжения питания V0. Напряжение переключения Vs четырехслойного диода D1 (современное название — динистор, разновидность тиристора. — С.Л.) выбрано большим V0 и меньшим 2*V0. В предаварийных условиях D1 находится в запертом состоянии. В случае возникновения кратковременных или устойчивых аварийных условий нормально открытые аварийные контакты замыкаются (механическим, электромеханическим или электронным путем). Это замыкание приводит к мгновенному заземлению одной из пластин С1, в результате чего напряжение, управляющее переключением D1, поднимается выше Vs . Диод D1 переключается в проводящее состояние, и напряжение питания подается на сигнальную лампу. Ток, при котором диод D1 сохраняет устойчивое проводящее состояние, выбран меньшим тока сигнальной лампы. Когда аварийные условия устраняются, нормально закрытые контакты возврата размыкаются и схема возвращается в исходное состояние.
На рис. 2 показана запоминающая схема на 4-слойных диодах. Короткий импульс на любом из входов схемы приводит к изменению уровня постоянного тока на соответствующем выходе. Одновременный возврат всех цепей запоминающей схемы в исходное состояние осуществляется при помощи размыкания контакта возврата.
Напряжение переключения 4-слойного диода выбирается большим напряжения питания V0. При подаче на вход одной из параллельных цепей схемы короткого положительного импульса 4-слойный диод открывается и пропускает ток через сопротивление R1. Положительный уровень напряжения, устанавливающийся на сопротивлении R1, будет удерживаться до тех пор, пока все 4-слойные диоды схемы не будут возвращены в исходное состояние размыканием цепи возврата.
Железный поток
Устройство для считывания с бумажной перфоленты
Упрощенный лентопротяжный механизм, удобство заправки кассет и компактная легкая конструкция характеризуют новое устройство для считывания с перфоленты, которое разработано для ввода программ и обнаружения неисправностей в управляющей вычислительной машине, входящей в новую тактическую ракетную систему. Считывающее устройство занимает объем менее 30 кв. дм и весит всего около 12 кг. Габаритные размеры 22*25*33 см. Для надежной работы на борту ракеты-носителя в комплексе с управляющей вычислительной машиной в считывающем устройстве применяется прочная кассета, в которую вмещается до 45 м перфоленты, образующей бесконечную петлю. Лентопротяжный механизм упрощен благодаря применению муфты в приводе ведущей оси. Единственным вращающимся элементом является вал с муфтой, связанный с ведущей осью и обеспечивающий нормальное ускорение ленты при каждом шаге протяжки. Такая конструкция упрощает техническое обслуживание, облегчает проверку и в случае необходимости замену механизма. Новое считывающее устройство удобно для ввода повторяющихся программ (например, подпрограмм). Скорость перемотки перфоленты в одном направлении равна 0,4 м/с, а в режиме последовательного считывания знаков — 0,27 м/с. В устройстве используется майларовая пленка толщиной 80 мкм и шириной 25,4 мм.
Cook Electric