Читаем Значимые фигуры. Жизнь и открытия великих математиков полностью

Развивая эту идею, Лагранж нашел общий метод решения уравнений квадратных, кубических и четвертой степени с использованием перестановочных свойств конкретных выражений в решениях. Он показал также, что этот метод не работает для уравнений пятой степени. Он приводит не к более простому уравнению, а, наоборот, к более сложному, лишь усугубляя проблему. Это не означает, что такое уравнение невозможно решить никаким иным способом, но это уже явный намек на потенциальные проблемы.

В 1799 г. Паоло Руффини, поняв намек, опубликовал двухтомную «Общую теорию уравнений». «Алгебраическое решение обобщенных уравнений степени выше четвертой, – писал он, – всегда невозможно. Вот очень важная теорема, которую, мне кажется, я в состоянии доказать (если не ошибаюсь)». В качестве источника вдохновения он сослался на исследование Лагранжа. К несчастью для Руффини, перспектива продираться через 500-страничный том, наполненный сложной алгеброй, только для того, чтобы получить в конечном итоге отрицательный результат, никому не улыбалась, и на его работу не обратили практически никакого внимания. Ведущие алгебраисты начали уже примиряться с вероятным отсутствием решения, и это, вероятно, тоже не способствовало повышенному интересу. Да и слухи о том, что в книге есть ошибки, гасили всякое желание с ней знакомиться. Руффини попробовал еще раз, с доработанным доказательством, более простым, как ему казалось, для понимания. В 1821 г. Коши все же написал автору, что его книга «всегда казалась мне достойной внимания математиков и, насколько я могу судить, полностью доказывает невозможность решения алгебраических уравнений степени выше четвертой».

Возможно, похвала Коши несколько исправила репутацию Руффини, но ему не пришлось долго этому радоваться; он умер меньше чем через год. После его смерти математики пришли к общему мнению о том, что уравнение пятой степени невозможно решить в радикалах, но статус доказательства Руффини долго еще оставался неясным. Лишь много лет спустя в нем была обнаружена небольшая ошибка. Пробел можно было залатать, еще удлинив тем самым книгу Руффини, но к тому момент Абель уже нашел гораздо более короткое и простое доказательство. Мало того, оказалось, что один из его результатов вполне в состоянии дополнить доказательство Руффини. Абель умер молодым, вероятно от туберкулеза. Такое впечатление, что уравнение пятой степени было чем-то вроде отравленной чаши для всех, кто занимался поисками его решения.

И Руффини, и Абель взяли на вооружение ключевую идею Лагранжа: важно, какие выражения сохраняют инвариантность при определенных перестановках корней. Главный вклад Галуа заключался в создании общей теории, основанной на перестановках и применимой к любым полиномиальным уравнениям. Он не просто доказал, что какие-то конкретные уравнения нерешаемы в радикалах; он задался вопросом, какие из них решаемы. Его ответ состоял в том, что набор перестановок, сохраняющих все алгебраические соотношения между корнями, – он назвал это группой уравнения – должен иметь конкретную, довольно формальную, но четко определенную структуру. Детали этой структуры объясняют, какие именно радикалы появятся в решении, если решение в радикалах существует в принципе. Отсутствие такой структуры означает, что решения в радикалах просто нет.

Задействованная здесь структура весьма сложна, хотя и естественна с точки зрения теории групп. Уравнение решаемо в радикалах в том, и только том случае, если его группа Галуа имеет серию особых подгрупп (именуемых «нормальными»), такую, что конечная подгруппа содержит всего одну перестановку и число перестановок в каждой последующей подгруппе равно числу перестановок в предыдущей, деленному на некоторое простое число. Идея доказательства состоит в том, что нужны только простые радикалы – к примеру, корень шестой степени есть квадратный корень из кубического корня, при этом числа 2 и 3 – простые, – и каждый такой радикал снижает размер соответствующей группы делением числа ее членов на соответствующее простое число.

Группа Галуа для обобщенного уравнения четвертой степени, к примеру, содержит все 24 возможные перестановки решений. Эта группа имеет нисходящую цепочку нормальных подгрупп с размерами

24 12 4 2 1

и

24/12 = 2 – простое,

12/4 = 3 – простое,

4/2 = 2 – простое,

2/1 = 2 – простое.

Следовательно, уравнение четвертого порядка решить можно, и в формуле для решения мы ожидаем встретить квадратные (следует из двоек) и кубические (следует из троек) корни, но ничего больше.

Группы для квадратных и кубических уравнений меньше по размеру и опять же имеют нисходящие цепочки нормальных подгрупп, размеры которых изменяются делением на простые числа. А что с уравнением пятой степени? У него пять решений, что дает нам 120 перестановок. Единственная цепочка нормальных подгрупп имеет размеры

120 60 1.

Поскольку 60/1 = 60 – не простое число, решений в радикалах у такого уравнения быть не может.

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
10 гениев спорта
10 гениев спорта

Люди, о жизни которых рассказывается в этой книге, не просто добились больших успехов в спорте, они меняли этот мир, оказывали влияние на мировоззрение целых поколений, сравнимое с влиянием самых известных писателей или политиков. Может быть, кто-то из читателей помоложе, прочитав эту книгу, всерьез займется спортом и со временем станет новым Пеле, новой Ириной Родниной, Сергеем Бубкой или Михаэлем Шумахером. А может быть, подумает и решит, что большой спорт – это не для него. И вряд ли за это можно осуждать. Потому что спорт высшего уровня – это тяжелейший труд, изнурительные, доводящие до изнеможения тренировки, травмы, опасность для здоровья, а иногда даже и для жизни. Честь и слава тем, кто сумел пройти этот путь до конца, выстоял в борьбе с соперниками и собственными неудачами, сумел подчинить себе непокорную и зачастую жестокую судьбу! Герои этой книги добились своей цели и поэтому могут с полным правом называться гениями спорта…

Андрей Юрьевич Хорошевский

Биографии и Мемуары / Документальное
Клуб банкиров
Клуб банкиров

Дэвид Рокфеллер — один из крупнейших политических и финансовых деятелей XX века, известный американский банкир, глава дома Рокфеллеров. Внук нефтяного магната и первого в истории миллиардера Джона Д. Рокфеллера, основателя Стандарт Ойл.Рокфеллер известен как один из первых и наиболее влиятельных идеологов глобализации и неоконсерватизма, основатель знаменитого Бильдербергского клуба. На одном из заседаний Бильдербергского клуба он сказал: «В наше время мир готов шагать в сторону мирового правительства. Наднациональный суверенитет интеллектуальной элиты и мировых банкиров, несомненно, предпочтительнее национального самоопределения, практиковавшегося в былые столетия».В своей книге Д. Рокфеллер рассказывает, как создавался этот «суверенитет интеллектуальной элиты и мировых банкиров», как распространялось влияние финансовой олигархии в мире: в Европе, в Азии, в Африке и Латинской Америке. Особое внимание уделяется проникновению мировых банков в Россию, которое началось еще в брежневскую эпоху; приводятся тексты секретных переговоров Д. Рокфеллера с Брежневым, Косыгиным и другими советскими лидерами.

Дэвид Рокфеллер

Биографии и Мемуары / История / Образование и наука / Документальное