Читаем Знаете ли вы физику? полностью

Итак, максимальной своей скорости снаряд действительно должен достигать не внутри орудия, а вне его, на некотором расстоянии от жерла, т. е. спустя короткий промежуток после того, как он уже покинул ствол орудия.

<p>44. Прыжки в воду</p>

Опасность прыжка в воду с значительной высоты состоит, главным образом, в том, что накопленная при падении скорость сводится к нулю на слишком коротком пути. Если, например, пловец бросается с высоты 10 м и погружается в воду на глубину 1 м, то скорость, накопленная на пути 10 м свободного падения, уничтожается на участке в 1 м. Отрицательное ускорение при погружении в воду должно быть в 10 раз больше ускорения свободно падающего тела. При погружении в воду пловец испытывает поэтому давление снизу, в данном случае вдесятеро превосходящее обычное давление, порождаемое весом. Иными словами, тело пловца становится словно в 10 раз тяжелее С вместо 70 кг весит 700 кг. Такой непомерный груз, действуя даже короткое время (пока длится погружение), может вызвать в организме серьезные расстройства.

Отсюда следует, между прочим, что вредные последствия прыжка смягчаются при возможно более глубоком погружении в воду; накопленная при падении скорость поглощается тогда на более длинном пути, и ускорение (отрицательное) становится меньше.

<p>45. На краю стола</p>

Если плоскость стола перпендикулярна к отвесной линии, проходящей через ее середину, то края стола расположены, очевидно, дальше от центра Земли, т. е. выше, чем середина (практически на весьма незначительную величину). При полном отсутствии трения и при идеально плоской поверхности шар должен поэтому скатиться с края стола к его середине. Здесь, однако, он не может остановиться С накопленная кинетическая энергия увлечет его далее до точки, находящейся на одном уровне с начальной, т. е. до противоположного края.

Рис. 76. При взгляде на этот рисунок, не у всех явится мысль, что шар должен скатиться к середине стола

77. Но из этого чертежа ясно, что шар не может оставаться в покое (при отсутствии трения)

Оттуда шар снова откатится в первоначальное положение и т. д. Короче говоря, при отсутствии трения о плоскость стола и сопротивления воздуха, шар, положенный на край идеально плоского стола, пришел бы в нескончаемое движение.

Один американец предлагал устроить на этом принципе вечное движение. Проект его, изображенный на рис. 78, по идее совершенно правилен и осуществил бы вечное движение, если бы возможно было избавиться от трения. Впрочем, то же самое можно осуществить и проще С с помощью груза, качающегося на нити: при отсутствии трения в точке привеса (и сопротивления воздуха) такой груз должен качаться вечно[11]. Производить работу подобные приспособления, однако, не способны.

В заключение поучительно остановиться на возражении, сделанном одним из читателей, который утверждает, что в приведенном рассуждении смешиваются две точки зрения – геометрическая и физическая. Геометрически, – поясняет читатель, – мы считаем лучи Солнца сходящимися на его поверхности, физически же признаем их параллельными. Подобно этому, в нашей задаче две отвесные линии, проведенные на Земле в расстоянии 1 м, геометрически пересекаются в центре земного шара, но физически должны считаться параллельными. А потому сила, увлекающая шар с края стола к середине, физически равна нулю; никакого скатывания наблюдаться не может.

Рис. 78. Один из проектов «вечного движения»

Возражение ошибочно. Нетрудно убедиться расчетом, что отвесные линии, проведенные на Земле в расстоянии 1 м одна от другой, составляют между собою угол, который в 23 000 раз больше, чем угол между лучами Солнца, направленными к тем же точкам. Что касается величины силы, побуждающей шар скатываться с края стола, длиною в 1 м, то она составляет примерно одну 10–миллионную долю веса шара. В условиях нашей задачи, т. е. при полном отсутствии сопротивлений, всякая сколь угодно малая сила должна привести тело в движение, как бы велика ни была его масса. В данном случае, впрочем, сила не так уж мала: она одного порядка величины с тою силою, которая порождает океанские приливы; последняя сила даже и в реальных условиях (т. е. при наличии сопротивлений) ощутительно проявляет свое действие.

<p>46. На наклонной плоскости</p>

Не следует думать, что в положении А брусок, оказывая на опорную плоскость большее удельное давление, испытывает и большее трение. Величина трения не зависит от размеров трущихся поверхностей. Поэтому если брусок скользил, преодолевая трение, в положении В, то он будет скользить и в положении А.

<p>47. Два шара</p>
Перейти на страницу:

Похожие книги

Теория государства и права
Теория государства и права

Учебник, написанный в соответствии с курсом «Теория государства и права» для юридических РІСѓР·ов, качественно отличается РѕС' выходивших ранее книг по этой дисциплине. Сохраняя все то ценное, что наработано в теоретико-правовой мысли за предыдущие РіРѕРґС‹, автор вместе с тем решительно отходит РѕС' вульгаризированных догм и методов, существенно обновляет и переосмысливает РІРѕРїСЂРѕСЃС‹ возникновения, развития и функционирования государства и права.Книга, посвященная современной теории государства и права, содержит СЂСЏРґ принципиально новых тем. Впервые на высоком теоретическом СѓСЂРѕРІРЅРµ осмыслены и изложены РІРѕРїСЂРѕСЃС‹ новых государственно-правовых процессов современного СЂРѕСЃСЃРёР№ского общества. Дается характеристика гражданского общества в его соотношении с правом и государством.Для студентов, аспирантов, преподавателей и научных работников юридических РІСѓР·ов.Р

Алла Робертовна Швандерова , Анатолий Борисович Венгеров , Валерий Кулиевич Цечоев , Михаил Борисович Смоленский , Сергей Сергеевич Алексеев

Детская образовательная литература / Государство и право / Юриспруденция / Учебники и пособия / Прочая научная литература / Образование и наука