Теперь возникает вопрос: в чем ограниченность классической теории передачи информации? Ограниченность очень существенная для нашей эпохи, а именно: информация должна быть защищена, а классическая теория не гарантирует защищенности при используемых в настоящее время процессах передачи информации. Естественно, я здесь имею в виду не только правительственную связь и какие-то коммерческие тайны, но и важную банковскую информацию, считывание и передачу данных из банкоматов и так далее, когда любая информация должна быть защищена от несанкционированного доступа.
В классической теории передачи информации существует серьезная проблема: нет гарантии того, что третье лицо эту информацию несанкционированно не прочитает. На наше счастье, есть очень интересная наука криптография, истоки которой лежат в античных временах. Еще Юлий Цезарь разработал криптосистему, чтобы передавать войскам секретную информацию. Но все используемые в настоящее время на практике криптосистемы отнюдь не безопасны. Еще никто не доказал, что не существует алгоритма, способного взломать самые секретные коды. А при постоянной опасности терроризма все это становится принципиально важным.
При пересылке закодированных сообщений самое главное — передать секретный ключ от отправителя получателю, только с ним можно будет раскодировать сообщение. В квантовой информатике кодирование информации производится не классическими битами, а квантовыми битами (кубитами). При этом компьютер — это прибор обработки информации, а квантовый компьютер — прибор обработки квантовой информации. И элементы квантовой информации — кубиты, которыми можно кодировать обычные биты информации, — можно передавать, например, как поляризованные фотоны, по обычным оптоволоконным линиям. Но третье лицо хочет не просто несанкционированно считать информацию, оно хочет быть при этом невидимым. А квантовая криптография, которая начала развиваться около 20 лет назад, показала, что при передаче информации квантовыми частицами, в силу законов квантовой механики, любое вмешательство в квантовое состояние — суперпозицию классических — приводит к разрушению квантового состояния и тем самым к разрушению передаваемой информации. Таким образом, подобное вмешательство просто разрушает канал связи и прочитать информацию третье лицо не сможет. При этом получатель будет знать о попытке взлома. То есть законы квантовой механики при правильной организации делают передачу информации абсолютно защищенной.
Сегодня это остается фантастикой. Пока передача квантовой информации через обычную оптоволоконную линию ограничена расстоянием до 200 километров (в сентябре прошлого года установлен рекорд расстояния — 184,6 километра при передаче секретного ключа по оптоволоконной линии), но на таком расстоянии эта фантастика уже воплощена в жизнь: разработано специальное оборудование, производимое по крайней мере двумя фирмами, которое активно покупается банками. Значение этого факта не стоит преуменьшать: в крупных городах передать конфиденциальную информацию между филиалами одного банка так же важно, как между городами или странами. А по классическим каналам связи — телефонным или компьютерным, это, как известно, делать небезопасно.
То, что уже работает на практике, так называемый квантовый протокол, разработанный в 1984 году, сегодня успешно развивается. Есть, конечно, трудности: по законам квантовой механики нельзя усиливать сигнал в процессе его передачи, поскольку нельзя клонировать неизвестное квантовое состояние. Таким образом, мы имеем те же, что и в классической теории информации, три ступени: переносчики — кубиты информации, обработка — воздействие на них какими-то физическими полями, переводящими квантовые регистры из одного квантового состояния в другое, а считывание информации — это их измерение. В экспериментальном изучении процесса измерения, благодаря квантовому компьютингу и квантовой информатике, в последнее время достигнут заметный прогресс. Это фундаментальный и очень сложный процесс — взаимодействие квантовой системы с классической. Здесь еще много открытых вопросов, но квантовая информатика открывает совершенно неожиданные перспективы.
Есть еще одно квантовое явление, которое именно в теории информации играет первостепенную роль. Это так называемые перепутанные или сцепленные квантовые состояния. Оказывается, квантовые системы могут находиться в такой сильной корреляции состояний, что воздействие на одну частицу «почувствуют» все остальные независимо от того, на каком расстоянии они находятся друг от друга. Эйнштейн не принял это положение и вместе с Розеном и Подольским в 1935 году сформулировал известный парадокс, связанный со сцепленными состояниями. Это очень трудная задача — понимание теории таких состояний, даже для экспертов она представляет большую трудность.