В начале 80-х Полю Бенеффу, Ричарду Фейнману и Дэвиду Дойчу удалось свести воедино две дисциплины, которые ранее считались взаимоисключающими — квантовую физику и информатику. Исследователи показали, что квантовая механика не только не ограничивает вычислительных возможностей, но и позволяет в ряде случаев существенно их расширить. Бенефф выдвинул идею универсального квантового компьютера — машины, которая выполняет логические операции, опираясь на квантовые алгоритмы, не имеющие аналогов в классической физике, и способна решать любые (а не только специализированные) задачи. Фейнман показал, что квантовый компьютер для ряда задач является более мощным, чем классический, а Дойч разработал идею квантового параллелизма. Таким образом, эти ученые заложили фундамент новой современной области исследований — квантовых информационных технологий, или квантовой информатики.
Отдельные кубиты интересны, но при объединении нескольких кубитов возникают еще более поразительные особенности поведения. Главная черта квантовой теории информации — представление о том, что два и более квантовых объекта могут иметь сцепленные (связанные между собой) состояния. Сцепленность произвела на Эрвина Шредингера такое впечатление, что в 1935 году он назвал это свойство «самой главной характерной особенностью квантовой механики, которая заставляет полностью отказаться от классических представлений». Отдельные члены группы сцепленных объектов не имеют индивидуальных квантовых состояний, и только группа в целом имеет четко определенное состояние.
Сцепленные объекты связаны между собой независимо от того, как далеко друг от друга они расположены. Расстояние ни в малейшей степени не ослабляет сцепленности. Если какой- то объект сцеплен с другими, измерение его состояния одновременно дает сведения о его партнерах. Можно ошибочно предположить, что сцепленность можно использовать для передачи сигналов быстрее скорости света, вопреки постулату частной теории относительности. Однако этому препятствует вероятностная природа квантовой механики.