Капекки показал, что ГР — обмен участками между гомологичными хромосомами — может происходить не только между двумя хромосомами одной и той же пары, но также между одной из них и «внешней» молекулой ДНК, специально для этого введенной в клетку. Капекки экспериментировал с клетками млекопитающих, у которых один какой- то ген был испорчен мутацией. Вводя в клетку (в пробирке) «здоровую» ДНК, он создавал возможность обмена генами (то есть ГР) между этой ДНК и «больной» хромосомой, в результате чего больной ген переходил на «внешнюю» ДНК, а здоровый — на хромосому. Смитис обнаружил, что этот метод позволяет нокаутировать любой ген, не взирая на его функцию и степень активности. Однако и Капекки, и Смитис работали с клетками взрослых организмов, поэтому они не могли продвинуться к нокаутированию всех клеток, то есть к созданию «нокаутированного организма». И тут появились работы Эванса по эмбриональным стволовым клеткам, которые эту возможность открывали. В 1989 году Капекки и Смитис, соединив обе половинки пазла — ГР и ЭСК, — создали первую в истории нокаутированную мышь, то есть мышь, во всех клетках которой был выключен один и тот же ген. В дальнейшем Капекки усовершенствовал метод, придумав способ эффективного различения нокаутированных и не-нокаутированных ЭСК в пробирке (так называемых позитивно-негативный отбор).
Сергей Смирнов
В год рождения Ландау (1908)
За последние три года обзоры по истории науки стали в нашем журнале обычной вещью. Нарушать эту традицию не хочется, тем более что каждый юбилей знатного события или персоны пробуждает уйму воспоминаний, ассоциаций и мечтаний о том, как все было, как оно могло обернуться и как оно намерено развиваться сейчас. Первая дата этого сорта в 2008 году — столетний юбилей вечно юного мальчишки Льва Ландау. Очень хочется понять: в каком мире возник этот несносный гений. Какая эпоха огранила его талант, и как он сам огранил свою эпоху?
В тот олимпийский год чудеса творились повсеместно. В Лондоне первым чемпионом по фигурному катанию стал россиянин Панин-Коломенкин. А в Стокгольме вторым нобелевским лауреатом России стал Илья Мечников — друг и наследник великого «виталиста» Пастера. Всякий иммунитет живых организмов вызывается их живыми компонентами — клетками либо органеллами! Таково кредо пастеровской школы в Париже, к которой охотно присоединился вечный романтик Мечников.
Немцы, вслед за Робертом Кохом, думают иначе. Прошлогодний нобелевский лауреат Бухнер доказал, что брожение сахаров можно вызвать чистым химическим ферментом — неким сложным белком, который пока умеют производить только клетки дрожжей. Но и химики этот рубеж одолеют! Не напрасно нобелевский лауреат 1902 года Эмиль Фишер разбирает на кирпичики-аминокислоты все доступные ему белки; он даже пытается воссоздать из этих кирпичиков нечто съедобное. Хотя бы для микробов! Кое-что синтетическое они уже едят... Значит, и человека эта участь не минует!
Другой нобелевский лауреат 1908 года — Пауль Эрлих, принципиальный оппонент Мечникова — старается не накормить людей, а вылечить их от очередных болезней. В основе его работы лежит простая химическая идея: новые лекарства должно составлять из старого яда и новых красок! Ведь химики-органики уже наработали огромное семейство пигментов, крепко сцепляющихся с органическими волокнами. То есть с какими-то органеллами клеток! Теперь надо выбрать краски, удачно схватывающиеся со знакомыми клетками возбудителей сифилиса, малярии, туберкулеза. Довесить к этим краскам бесспорно ядовитые атомы (ртуть или мышьяк) — и получить лекарства, смертельные для живых возбудителей. Потом нужно будет их модифицировать так, чтобы они не убивали хозяина-человека. Это трудно сделать, но Эрлих упорен, так что сонная болезнь и сифилис уже побеждены. То ли еще будет!
Так породистый физиолог и породистый химик делят в 1908 году Нобелевскую премию по медицине. Кому же досталась премия по химии? Породистому физику — Эрнесту Резерфорду! И поделом ему: ведь упорный новозеландец воплотил вековую мечту алхимиков с помощью радиоактивного излучения! Облучая альфа-частицами атомы разных легких элементов, Резерфорд научился превращать свои мишени в совсем другие элементы. Нет, пока не в золото — но и туда Резерфорд доберется, в этом нет сомнений.
Похоже, что со времен первых металлургов химики только переставляли атомы внутри молекул. Нынче физики освоили «арифметику» атомов, где сумма отлична от всех слагаемых. Что же будет, когда физики доберутся до атомной «алгебры», заглянут внутрь атомной кухни?
Ждать осталось три года — пока Резерфорд не обстреляет альфа-частицами атомы золота. От этих массивных тел альфа-частицы будут отскакивать, как горошины от стенки. Так Резерфорд поймет, что большая часть атомной массы сосредоточена в маленьком ядре. Как большая часть массы Солнечной системы заключена в самом Солнце...